PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dealing with Imprecise Knowledge on Preferences and Majority in Group Decision Making: Towards a Unified Characterization of Individual and Collective Choice Functions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A fuzzy preference relation is a popular model to represent both individual and group preferences. However, what is often sought is a subset of alternatives that is an ultimate solution of a decision problem. In order to arrive at such a final solution individual and/or group choice rules may be employed. There is a wealth of such rules devised in the context of the classiccal, crisp preference relations. Originally, most of the popular group decision making rules were conceived for classical (crisp) prefernce relations (orderings), and then extended to the case of traditional fuzzy preference relations. Moreover, they often differ in their assumptions about the properties of the preference relations to be processed. In the paper we pursue the path towards a universal representation of such rules that provides an effective generalization of the classical rules for the fuzzy case. Moreover, it leads to a meaningful extension to the linguistic preferences, in the spirit of the computing with words paradigm.
Twórcy
autor
  • Systems Research Institute Polish Academy of Sciences, ul. Newelska 6, 01-447 Warszawa, Poland
autor
  • Systems Research Institute Polish Academy of Sciences, ul. Newelska 6, 01-447 Warszawa, Poland
Bibliografia
  • [1] M. Aizerman, F. Aleskerov, Theory of choice, North-Holland, Amsterdam 1995.
  • [2] K. J. Arrow, Social choice and individual values, Second Edition,, Wiley, New York 1963.
  • [3] C. R. Barrett, P. K. Pattanaik, M. Salles, On choosing rationally when preferences are fuzzy, Fuzzy Sets and Systems, 34 (1990) 197-212.
  • [4] J. M. Blin, Fuzzy relations in group decision theory, Journal of Cybernetics, 4 (1974) 17-22.
  • [5] J. M. Blin, A. P. Whinston, Fuzzy sets and social choice, Journal of Cybernetics, 4 (1973) 17-22.
  • [6] A. Billot, Aggregation of preferences: the fuzzy case, Theory and Decision, 30 (1991) 51-93.
  • [7] D. Bouyssou, A note on the sum of differences choice function for fuzzy preference relations, Fuzzy Sets and Systems, 47, 2, (1992).
  • [8] M. Delgado, J. L. Verdegay, M. A. Vila, On aggregation operations of linguistic labels, International Journal of Intelligent Systems, 8 (1993) 351-370.
  • [9] M. Fedrizzi, J. Kacprzyk, On measuring consensus in the setting of fuzzy preference relations, in: Non-Conventional Preference Relations in Decision Making, eds.: J. Kacprzyk, M. Roubens, Springer-Verlag, Heidelberg (1988) 129-141.
  • [10] M. Fedrizzi, J. Kacprzyk, S. Zadrożny, An interactive multi-user decision support system for consensus reaching processes using fuzzy logic with linguistic quantifiers, Decision Support Systems, 4 (1988) 313-327.
  • [11] A. Gibbard, Manipulation of schemes that mixvoting with chance, Econometrica, 45 (1973) 665-681.
  • [12] F. Herrera, E. Herrera-Viedma, Aggregation operators for linguistic weighted information, IEEE Transactions on Systems, Man and Cybernetics, 27 (1997) 646-656.
  • [13] F. Herrera, E. Herrera-Viedma, Choice functions and mechanisms for linguistic preference relations, EJOR, 120 (2000) 144-161.
  • [14] F. Herrera, E. Herrera-Viedma, J. L. Verdegay, Direct approach processes in group decision making using linguistic OWA operators, Fuzzy Sets and Systems, 79 (1996) 175-190.
  • [15] F. Herrera, E. Herrera-Viedma, J. L. Verdegay, Applications of the linguistic OWA operators in group decision making, in: The Ordered Weighted Averaging Operators. Theory and Applications, eds.: R. R. Yager, J. Kacprzyk, Kluwer Academic Publishers, Boston (1997) 205-218.
  • [16] M. D. Intriligator, A probabilistic model of social choice, Review of Economic Studies, 40 (1973) 553-560.
  • [17] M. D. Intriligator, Probabilistic models of choice, Mathematical Social Sciences, 2 (1982) 157-166.
  • [18] A. B. Judin, Computational methods of decision making (in Russian), Vychislitelnye Metody Priniatya Reshenniy, Nauka, Moscow 1989.
  • [19] J. Kacprzyk, Collective decision making with a fuzzy majority rule, in: Proc. Of WOGSC Congress (AFCET, Paris, 1984) 153-159.
  • [20] J. Kacprzyk, Some ‘commonsense’ solution concepts in group decision making via fuzzy linguistic quantifiers, in: Management Decision Support Systems Using Fuzzy Sets and Possibility Theory, eds.: J. Kacprzyk, R. R. Yager, Verlag TV Rheinland, Cologne (1985) 125-135.
  • [21] J. Kacprzyk, Group decision making with a fuzzy majority via linguistic quantifiers. Part I: A consensory — like pooling, Cybernetics and Systems: an Int. Journal, 16 (1985) 119-129.
  • [22] J. Kacprzyk, Group decision making with a fuzzy majority via linguistic quantifiers. Part II: A competitive — like pooling, Cybernetics and Systems: an Int. Journal, 16 (1985) 131-144.
  • [23] J. Kacprzyk, Group decision making with a fuzzy linguistic majority, Fuzzy Sets and Systems, 18 (1986) 105-118.
  • [24] J. Kacprzyk, On some fuzzy cores and ‘soft’ consensus measures in group decision making, in: The Analysis of Fuzzy Information, ed.: J. C. Bezdek, Vol. 2, CRC Press, Boca Raton (1987) 119-130.
  • [25] J. Kacprzyk, Fuzzy logic with linguistic quantifiers: a tool for better modeling of human evidence aggregation processes?, in: Fuzzy Sets in Psychology, ed.: T. Zetenyi, North-Holland, Amsterdam 1988.
  • [26] J. Kacprzyk, M. Fedrizzi, ‘Soft’ consensus measures for monitoring real consensus reaching processes under fuzzy preferences, Control and Cybernetics, 15 (1986) 309-323.
  • [27] J. Kacprzyk, M. Fedrizz i, A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences, European Journal of Operational Research, 34 (1988) 315-325.
  • [28] J. Kacprzyk, M. Fedrizzi, A ‘human-consistent’ degree of consensus based on fuzzy logic with linguistic quantifiers, Mathematical Social Sciences, 18 (1989) 275-290.
  • [29] J. Kacprzyk, M. Fedrizzi, H. Nurmi, Group decision making with fuzzy majorities represented by linguistic quantifiers, in: Approximate Reasoning Tools for Artificial Intelligence, ed.: J. L. Verdegay, M. Delgado, Verlag TV Rheinland, Cologne (1990) 126-145.
  • [30] J. Kacprzyk, H. Nurmi, Linguistic quantifiers and fuzzy majorities for more realistic and human-consistent group decision making, in: Fuzzy Methodologies for Industrial and Systems Engineering, eds.: G. Evans, W. Karwowski, M. Wilhelm (Elsevier, Amsterdam 1989) 267-281.
  • [31] J. Kacprzyk, H. Nurmi, Group decision making under fuzziness, in: R. Słowiński (ed.): Fuzzy Sets in Decision Analysis, Operations Research and Statistics, Kluwer, Boston (1998) 103-136.
  • [32] J. Kacprzyk, H. Nurmi, M. Fedrizzii, Group decision making and a measure of consensus under fuzzy preferences and a fuzzy linguistic majority, in: L. A. Zadeh, J. Kacprzyk (Eds.): Computing with Words in Information/Intelligent Systems. Part 2. Foundations, Physica-Verlag, Heidelberg and New York (1999) 233-243.
  • [33] J. Kacprzyk, S. Zadrożny, Collective choice rules under linguistic preferences: an example of the computing with words/perceptions paradigm, Proc. Ninth IEEE International Conference on Fuzzy Systems, San Antonio, USA (May 2000) 786-791.
  • [34] J. Kacprzyk, S. Zadrożny, Computing with words in decision making through individual and collective linguistic choice rules, International Journal of Uncertainty, Fuzziness and Knowledge - Based Systems, 9 (2001) 89-102,
  • [35] J. Kacprzyk, S. Zadrożny, M. Fedrizzi, An interactive GDSS for consensus reaching using fuzzy logic with linguistic quantifiers, in: Fuzzy Information Engineering-A Guided Tour of Applications, eds.: D. Dubois, H. Prade, R. R. Yager, Wiley, New York (1997) 567-574,
  • [36] J. S. Kelly, Arrow impossibility theorems, Academic Press, New York 1971.
  • [37] J. B. Kim, Fuzzy rational choice functions, Fuzzy Sets and Systems, 10 (1983) 37-43.
  • [38] L. Kitainik, Fuzzy decision procedures with binary relations: towards a unified theory, Kluwer Academic Publishers, Boston/Dordrecht/London 1993.
  • [39] B. Loewer, R. Laddaga, Destroying the consensus, Synthese 62, 1, (1985) 79-96.
  • [40] M. Marimin, M. Umano, I. Hatono, H. Tamura, Linguistic labels for expressing fuzzy preference relations in fuzzy group decision making, IEEE Trans. On Systems, Man and Cybernetics, 28B (1998) 205-218.
  • [41] H. Nurmi, Approaches to collective decision making with fuzzy preference relations, Fuzzy Sets and Systems, 6 (1981) 249-259.
  • [42] H. Nurmi, Comparing voting systems, Reidel, Dordrecht 1987.
  • [43] H. Nurmi, Assumptions on individual preferences in the theory of voting procedures, in: Non-Conventional Preference Relations in Decision Making, eds.: J. Kacprzyk, M. Roubens, Springer-Verlag, Heidelberg (1988) 142-155.
  • [44] H. Nurmi, M. Fedrizzi, J. Kacprzyk, Vague notions in the theory of voting in: Multiperson Decision Making Models Using Fuzzy Sets and Possibility Theory, eds.: J. Kacprzyk, M. Fedrizzi, Kluwer, Dordrecht (1990) 43-52,
  • [45] H. Nurmi, J. Kacprzyk, On fuzzy tournaments and their solution concepts in group decision making, EJOR, 51 (1991) 223-232.
  • [46] H. Nurmi, J. Kacprzyk, Social choice under fuzziness: a perspective, in: J. Fodor, B. De Baets, P. Perny (eds.): Preferences and Decisions under Incomplete Knowledge. Physica-Verlag (Springer-Verlag), Heidelberg and New York (2000) 107-130.
  • [47] S. V. Ovchinnikov, V. M. Ozernoy, Identifying noninferior decision alternatives based on fuzzy binary relations, in: Non-Conventional Preference Relations in Decision Making, eds.: J. Kacprzyk, M. Roubens, Springer Verlag, Berlin (1988) 82-95.
  • [48] S. V. Ovchinnikov, Modelling valued preference relations, in: Multiperson Decision Making Models using Fuzzy Sets and Possibility Theory, eds.: J. Kacprzyk, M. Fedrizzi, Kluwer Academic Publishers, Dordrecht (1990) 64-70.
  • [49] M. Roubens, Some properties of choice functions based on valued binary relations, EJOR, 40 (1989) 309-321.
  • [50] M. Salles, Fuzzy utility, in: Handbook of Utility Theory, eds.: S. Barbera, P. J. Hammond, C. Seidl, Kluwer, Boston 1996.
  • [51] T. Schwartz, The Logic of collective choice, Columbia University Press, New York 1986.
  • [52] A. K. Sen, Collective choice and social welfare, Oliver & Boyd, Edinburgh 1970.
  • [53] F. Seo, M. Sakawa, Fuzzy multiattribute utility analysis for collective choice, IEEE Trans. on Systems, Man and Cybernetics, SMC-15 (1985) 45-53.
  • [54] A. R. de Soto, E. Trillas, On antonym and negate in fuzzy logic, International Journal of Intelligent Systems 14 (1999) 295-303.
  • [55] Z. Świtalski, Choice functions associated with fuzzy preference relations, in: Non-Conventional Preference Relations in Decision Making, eds.: J. Kacprzyk, M. Roubens, Springer-Verlag, Berlin 1988.
  • [56] T. Tanino, On group decision making under fuzzy preferences, in: Multiperson Decision Making Models using Fuzzy Sets and Possibility Theory, eds.: J. Kacprzyk, M. Fedrizzi, Kluwer, Dordrecht (1990) 172-185.
  • [57] R. R. Yager, Quantifiers in the formulation of multiple objective decision functions, Information Sciences, 31 (1983) 107-139.
  • [58] R. R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Transactions on Systems, Man and Cybernetics, 18 (1988) 183-190.
  • [59] R. R. Yager, Interpreting linguistically quantified propositions, International Journal of Intelligent Systems, 9 (1994) 541-569.
  • [60] R. R. Yager, J. Kacprzyk, (eds.) The ordered weighted averaging operators: theory and applications, Kluwer, Boston 1997.
  • [61] L. A. Zadeh, J. Kacprzyk, Computing with words in information/intelligent systems 1. Foundations, 2. Applications, Physica-Verlag, Heidelberg and New York 1999.
  • [62] L. A. Zadeh, A computational approach to fuzzy quantifiers m natural languages, Comp, and Maths. with Appls., 9 (1983) 149-184.
  • [63] L. A. Zadeh, A computational theory of dispositions, International Journal of Intelligent Systems, 2 (1987) 39-64.
  • [64] S. Zadrożny, J. Kacprzyk, Collective choice rules: a classification using the OWA operators, Proc. EUSFLAT-ESTYLF Joint Conference, Palma, Spain (1999) 21-24.
  • [65] S. Zadrożny, An approach to the consensus reaching support in fuzzy environment, in: Consensus under Fuzziness, eds.: J. Kacprzyk, H. Nurmi, M. Fedrizzi, Kluwer, Boston 1996.
  • [66] S. Zadrożny, J. Kacprzyk, An approach to individual and collective choice under linguistic preferences, Proc. Eight International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems IPMU 2000, Madrid (July 2000) 462-469.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG1-0010-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.