PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reflection symmetry properties of generalized fractional derivatives

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we study the properties of generalized fractional derivatives (GFDs) with respect to the reflection mapping in finite intervals. We introduce symmetric and antisymmetric derivatives in a given interval and a split of arbitrary function into [J]- projections - parts with well-defined reflection symmetry properties. The main result are representation formulas for the symmetric and anti-symmetric GFDs of order α ∈ (0,1) which allow us to reduce the operators defined in the interval [a,b] to the ones given in arbitrarily short subintervals.
Twórcy
autor
autor
Bibliografia
  • [1] Klimek M., Lupa M., On reflection symmetry in fractional mechanics, Scientific Research of the Institute of Mathematics and Computer Science 2011, 10, 109-121.
  • [2] Klimek M., On reflection symmetry and its application to the Euler-Lagrange equations in fractional mechanics, Phil. Trans. R. Soc. A to appear, 2013.
  • [3] Riewe F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E 1996, 53, 1890-1899.
  • [4] Riewe F., Mechanics with fractional derivatives, Phys. Rev. E 1997, 55, 3581-3592.
  • [5] Agrawal O.P., Formulation of Euler-Lagrange equations for fractional variational problem, J. Math. Anal. Appl. 2002, 272, 368-379.
  • [6] Klimek M., Fractional sequential mechanics - models with symmetric fractional derivative, Czech. J. Phys. 2001, 51, 1348-1354.
  • [7] Klimek M., Lagrangean and Hamiltonian fractional sequential mechanics, Czech. J. Phys. 2002, 52, 1247-1253.
  • [8] Agrawal O.P., Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A: Math. Theor. 2007, 40, 6287-6303.
  • [9] Almeida R., Torres D.F.M., Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simulat. 2011, 16, 1490-1500.
  • [10] Almeida R., Pooseh S., Torres D.F.M., Fractional variational problems depending on indefinite integrals, Nonlinear Anal. TMA 2012, 75, 1009-1025.
  • [11] Atanackovic T.M., Stankovic B., On a differential equation with left and right fractional fractional derivatives, Fract. Calc. Appl. Anal. 2007, 10, 138-150.
  • [12] Atanackovic T.M., Konjik P., Pilipovic S., Variational problems with fractional derivatives: Euler-Lagrange equations, J. Phys. A: Math. Theor. 2008, 41, 095201.
  • [13] Baleanu D., Avkar T., Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, Nuovo Cim. B 2004, 119, 73-79.
  • [14] Baleanu D., Muslish S., Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, Physica Scripta 2005 ,72, 119-121.
  • [15] Baleanu D., Agrawal O.P., Fractional Hamilton formalism within Caputo's derivative, Czech. J. Phys. 2006, 56, 1087-1092.
  • [16] Baleanu D., Trujillo J.J., A new method of finding the fractional Euler-Lagrange and Hamilton equations within fractional Caputo derivatives, Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 1111-1115.
  • [17] Cresson J., Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 2007, 48, 033504.
  • [18] Klimek M., Lagrangian fractional mechanics - a non-commutative approach, Czech. J. Phys. 2005, 55, 1447-1454.
  • [19] Malinowska A.B., Torres D.F.M., Generalized natural boundary conditions for fractional variational problems in terms of Caputo derivative, Comput. Math. Appl. 2010, 59, 3110-3116.
  • [20] Odzijewicz T., Malinowska A.B., Torres D.F.M., Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal. TMA 2012, 75, 1507-1515.
  • [21] Agrawal O.P., Generalized variational problems and Euler-Lagrange equations, Comput. Math. Appl. 2010, 59, 1852-1864.
  • [22] Kilbas A.A., Saigo M., Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transform. Spec. Func. 2004,15, 31-49.
  • [23] Srivastava H.M., Tomovski Z., Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 2009, 211, 198-210.
  • [24] Tomovski Z., Hilfer R., Srivastava H.M., Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transform. Spec. Func. 2010, 21, 797-814.
  • [25] Tomovski Z., Sandev T., Fractional wave equation with a frictional memory kernel of Mittag-Leffler type, Appl. Math. Comput. 2012, 218, 10022-10031.
  • [26] Tomovski Z., Sandev T., Effects of a fractional friction with power-law memory kernel on string vibrations, Comp. Math. Appl. 2011, 62, 1554-1561.
  • [27] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon & Breach Science Publ., New York 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0023-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.