PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Finite Difference Method for transient convection-diffusion problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The convection-diffusion equation (1D problem) is considered. At first, the unknown temperature T is expanded into a Taylor series with respect to time taking into account its three components. Next, using the convection-diffusion equation and equation obtained from the differentiation of this equation, the way of temperature T computations is shown. In this new equation the high order derivatives with respect to spatial co-ordinate appear and the approximation of these derivatives is also discussed. The explicit scheme is used and the stability criteria are formulated. Finally, the results of computations are shown.
Twórcy
autor
autor
  • Department of Strength of Materials and Computational Mechanics Silesian University of Technology, Poland, ewa.majchrzak@polsl.pl
Bibliografia
  • [1] Raffray A.R., Pulsifer J., Tillack M.S., Modeling flow and heat transfer through porous media for high heat flux applications, University of California Energy Institute, Berkeley 2000.
  • [2] Strzelecki T. et al., Modelowanie przepływów przez ośrodki porowate, Dolnośląskie Wydawnictwo Edukacyjne, Wrocław 2008.
  • [3] Khaled A., Vafai K., The role of porous media in modeling flow and heat transfer in biological tissues, International Journal of Heat and Mass Transfer 2003, 46, 4989-5003.
  • [4] Kaviany M., Principles of Heat Transfer in Porous Media, 2nd edition, Springer, 1995.
  • [5] Lewis R.W., Morgan K., Thomas H.R., Seetharamu K.N., The Finite Element Method in Heat Transfer Analysis, John Wiley and Sons, Chichester 1996.
  • [6] Mochnacki B., Suchy J.S., Numerical Methods in Computations of Foundry Processes, PFTA, Cracow 1995.
  • [7] Majchrzak E., Mochnacki B., Numerical Methods. Theoretical Bases, Practical Aspects and Algorithms, Publ. of the Silesian University of Technology, Gliwice 2004.
  • [8] Mochnacki B., Dziewoński M., The evaporation effect in the domain of tissue subjected to a strong external heat source, Scientific Research of the Institute of Mathematics and Computer Science Czestochowa University of Technology 2008, 1(7).
  • [9] Mochnacki B., Lara-Dziembek S., Weighted residual method as a tool of FDM algorithm construction, Scientific Research of the Institute of Mathematics and Computer Science Czestochowa University of Technology 2010, 1(9), 147-153.
  • [10] Ciesielski M., Mochnacki B., Szopa R., Numerical modeling of biological tissue heating. Admissible thermal dose, Scientific Research of the Institute of Mathematics and Computer Science Czestochowa University of Technology 2011, 1(10).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0018-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.