Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the paper is to derive the Green's function of the Helmholtz operator in an elliptical region. The function is found in the form of a double series of Mathieu functions, which are obtained as a solution to the associated boundary problem. The Dirichlet condition on the boundary ellipse is assumed. The eigenvalues are the roots of characteristic equations, which are derived from the boundary condition. To construct Green's function depending on time, the orthogonality condition of the eigenfunctions in the elliptical region was used.
Rocznik
Tom
Strony
129--134
Opis fizyczny
Bibliogr. 7 poz., rys.
Twórcy
autor
- Institute of Mathematics, Czestochowa University of Technology, Poland, stanislaw.kukla@im.pcz.pl
Bibliografia
- [1] Chatjigeorgiou I.K., The analytic form of Green’s function in elliptic coordinates, Journal of Engineering Mathematics 2011, 1-19.
- [2] Gutierrez-Vega J.C., Rodriguez-Dagnino R.M., Meneses-Nava M.A., Chavez-Cerda S., Mathieu functions, a visual approach, American Journal of Physics 2003, 71(3), 233-242.
- [3] Hasheminejad S.M., Rezaei S., Hosseini P., Exact solution for dynamic response of an elastic elliptical membrane, Thin-Walled Structures 2011,49, 371-378.
- [4] Kukla S., Method of fundamental solutions for Helmholtz eigenvalue problems in elliptical domains, Scientific Research of the Institute of Mathematics and Computer Science 2009, 1(8), 85--90.
- [5] Kang S.W., Lee M.J., Kang Y.J., Vibration analysis of .arbitrarily shaped membranes using nondimensional dynamic influence function, Journal of Sound and Vibration 1999, 221(1), 117-132.
- [6] Duffy D.G., Green’s functions with applications, Chapman & Hall/CRC, Boca Raton, Washington DC 2001.
- [7] Kukla S., Funkcje Greena i ich zastosowania, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0016-0014