Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The exact solution to a problem of the thermally induced vibration of a homogeneous annular plate is presented. The considered plate is subjected to the activity of a point heat source, which moves with a constant angular velocity on the plate surface along a trajectory. The thermal moment is derived on the basis of a temperature field in the plate. The solution to the vibration problem is obtained by using Green's function method.
Rocznik
Tom
Strony
107--116
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
- Institute of Mechanics and Machine Design, Czestochowa University of Technology, Poland, jk@imipkm.pcz.czest.pl
Bibliografia
- [1] Ignaczak J., Nowacki W., Transversal vibration of a plate, produced by heating, Archives de Mecanique Appliquee 1961, XIII (5), 650-667.
- [2] Nakajo Y., Hayashi K., Response of simply supported and clamped circular plates to thermal impact, Journal of Sound and Vibration 1988, 122(2), 347-356.
- [3] Haider N. Arafat, Ali H. Nayfeh, Modal interactions in the vibrations of a heated annular plate, International Journal of Non-Linear Mechanics 2004, 39, 1671-1685.
- [4] Gaikwad M.N., Deshmukh K.C., Thermal deflection of an inverse thermoelastic problem in a thin isotropic circular plate, Applied Mathematical Modelling 2005, 29, 797-804.
- [5] Tauchert T.R., Ashida F., Sakata S., Takahashi Y., Control of temperature-induced plate vibrations based on speed feedback, Journal of Thermal Stresses 2006, 29, 585-606.
- [6] Khobragade N.L., Deshmukh K.C., Thermal deformation in a circular plate due to a partially distributed heat supply, Sadhana 2005, 30(4), 555-563.
- [7] Irie T., Yamada G., Thermally induced vibration of circular plate, Bulletin of the JSME 1978, 21, 162, 1703-1709.
- [8] Kidawa-Kukla J., Application of the Green’s function method to the problem of thermally induced vibration of a circular plate, Scientific Research of the Institute of Mathematics and Computer Science 2010, 1(9), 53-60.
- [9] Kidawa-Kukla J., Temperature distribution in an annular plate with a moving discrete heat generation source, Scientific Research of the Institute of Mathematics and Computer Science 2008, 1(8), 77-84.
- [10] Beck J.V. et al., Heat Conduction Using Green’s Functions, Hemisphere Publishing Corporation, London 1992.
- [11] Duffy D.G., Green’s Functions with Applications - Studies in Advanced Mathematics, Boca Raton, London, New York 2001.
- [12] http://mathworld.wolfram.com/MeijerG-Function.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0016-0012