PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of cooling process using fuzzy boundary element method with alpha-cuts

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the description of an unsteady heat transfer for a two-dimensional problem is presented. It is assumed that all the thermophysical parameters appearing in the mathematical model of the problem analyzed are given as fuzzy numbers. The problem discussed has been solved by means of the 1st scheme of the fuzzy boundary element method using α-cuts. The application of α-cuts allows one to avoid complicated arithmetical operations in the fuzzy numbers set. The interval Gauss elimination method with the decomposition procedure has been applied to solve the obtained fuzzy system of equations. In the final part of the paper, the results of numerical computations are shown.
Twórcy
  • Department of Strength of Materials and Computational Mechanics Silesian University of Technology, Poland, alicja.piasecka@polsl.pl
Bibliografia
  • [1] Majchrzak E., Metoda elementów brzegowych w przepływie ciepła, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2001.
  • [2] Majchrzak E., Mochnacki B., The BEM application for numerical solution of non-steady and non-linear thermal diffusion problems, Computer Assisted Mechanics and Engineering Sciences 1996, 3, 4, 327-346.
  • [3] Piasecka-Belkhayat A., Przedziałowa metoda elementów brzegowych w nieprecyzyjnych zadaniach niustalonej dyfuzji ciepła, Wydawnictwo Politechniki Śląskiej, Gliwice 2011.
  • [4] Burczyński T., Skrzypczyk J., Fuzzy aspects of the boundary element method, Engineering Analysis with Boundary Elements 1997, 19, 209-216.
  • [5] Piasecka-Belkhayat A., Interval boundary element method for 2D transient diffusion problem, Engineering Analysis with Boundary Elements 2008, 32, 5, 424-430.
  • [6] Piasecka-Belkhayat A., Interval boundary element method for 2D transient diffusion problem using directed interval arithmetic, Engineering Analysis with Boundary Elements 2011, 35, 3, 259-263.
  • [7] Guerra M.L., Stefanini L., Approximate fuzzy arithmetic operations using monotonic interpolations, Fuzzy Sets and Systems 2005, 150, 5-33.
  • [8] Markov S.M., On directed interval arithmetic and its applications, Journal of Universal Computer Science 1995, 1, 514-526.
  • [9] Giachetti R.E., Young R.E., A parametric representation of fuzzy numbers and their arithmetic operators, Fuzzy Sets and Systems 1997, 91, 185-202.
  • [10] Moore R.E., Bierbaum F., Methods and applications of interval analysis, SIAM 1979.
  • [11] Neumaier A., Interval Methods for System of Equations, Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0015-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.