PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of evolutionary algorithms for identification of dual phase lag model parameters

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dual phase lag model (DPLM) based on the generalized form of Fourier law, in particular the introduction of two 'delay times' (relaxation time τq and thermalization time τT) leads to the considered form of energy equation. This equation should be applied in the case of microscale heat transfer modeling. In particular, DPLM constitutes a good approximation of thermal processes which are characterized by extremely short duration (e.g. ultrafast laser pulse), extreme temperature gradients and geometrical features of the domain considered (e.g. thin metal film). In this paper, the identification problem of two of the above mentioned positive constants τq, τT is discussed and the thermal processes proceeding in the domain of thin metal film subjected to a laser beam are analyzed. At the stage of computations connected with the identification problem solution, evolutionary algorithms are used. To solve the problem, additional information concerning the transient temperature distribution on a metal film surface is assumed to be known.
Rocznik
Strony
189--198
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
autor
Bibliografia
  • [1] Al-Nimr M.A., Heat transfer mechanisms during short duration laser heating of thin metal films, International Journal of Thermophysics 1997, 18, 5, 1257-1268.
  • [2] Lin Z., Zhigilei L.V., Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Physical Review B 2008, 77, 075133-1-075133-17.
  • [3] Majchrzak E., Mochnacki B., Greer A.L., Suchy J.S., CMES: Computer Modelling in Engineering & Sciences 2009, 41, 2, 131-146.
  • [4] Tian W., Yang R., Phonon transport and thermal conductivity percolation in random nanoparticle composites, CMES: Computer Modeling in Engineering & Sciences 2008, 24, 2, 3, 123-142.
  • [5] Ozisik M.N., Tzou D.Y., On the wave theory in heat conduction, Journal of Heat Transfer 1994, 116, 526-535.
  • [6] Tzou D.Y., Chiu K.S., Temperature-dependent thermal lagging in ultrafast laser heating, Int. Journal of Heat and Mass Transfer 2001, 44, 1725-1734.
  • [7] Kaba I.K., Dai W., A stable three-level finite difference scheme for solving the parabolic two- step model in a 3D micro-sphere heated by ultrashort-pulsed lasers, Journal of Computational and Applied Mathematics 2005, 181, 125-147.
  • [8] Chen J.K., Beraun J.E., Numerical study of ultrashort laser pulse interactions with metal films, Numerical Heat Transfer, Part A 2001, 40, 1-20.
  • [9] Mochnacki B., Suchy J.S., Numerical Methods in Computations of Foundry Processes, Polish Foundrymen's Technical Association, Cracow 1995.
  • [10] Tang D.W., Araki N., Int. Journal of Heat and Mass Transfer 1999, 32, 855-860.
  • [11] Majchrzak E., Poteralska J., Two temperature model of microscopic heat transfer, Computer Method in Material Science 2011, 11, 2, 337-342.
  • [12] Majchrzak E., Poteralska J., Two-temperature microscale heat transfer model. Part 1: Determination of electrons parameters, Scientific Research of the Institute of Mathematics and Computer Science 2010, 1(9), 99-108.
  • [13] Majchrzak E., Poteralska J., Two-temperature microscale heat transfer model. Part 2: Determination of lattice parameters, Scientific Research of the Institute of Mathematics and Computer Science 2010, 1(9), 109-120.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0015-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.