Małgorzata Kowalik, Marek Koniecko

COMPARISON OF HUBER-MISES AND TRESKA YIELD CRITERIA

The purpose of the paper is to compare the Huber-Mises and Treska yield criteria. The paper has a review character. The Huber-Mises and Treska yield criteria are the most often used in engineering practice. The literature on various forms of yield conditions is broad (see [1-25], for instance). In isotropic material the loading function F involves the principal components of symmetric stress tensor σ , i.e. the three principal stresses σ_1 , σ_2 and σ_3 . The principal stresses can be expressed in terms of the three first invariants of the stress tensor. We denote the first invariant of the stress tensor by $J_{1\sigma}$, the second invariant of the stress deviator tensor $\mathbf{s} = \boldsymbol{\sigma} - (\text{tr } \boldsymbol{\sigma}/3)\mathbf{1}$ by J_{2s} and the third invariant of the stress deviator tensor by J_{3s}

$$J_{1\sigma}(\boldsymbol{\sigma}) = \operatorname{tr} \boldsymbol{\sigma} = 3p \tag{1}$$

$$h^{2} = J_{2s}(\boldsymbol{\sigma}) = \frac{1}{2} s_{ij} s_{ji} = \frac{1}{2} tr(\boldsymbol{s} \cdot \boldsymbol{s})$$
(2)

$$J_{3s}(\boldsymbol{\sigma}) = \frac{1}{3} s_{ij} s_{jk} s_{kl}$$
(3)

By (2) we have

$$h^{2} = \frac{1}{6} \left[(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{1} - \sigma_{3})^{2} + (\sigma_{2} - \sigma_{3})^{2} \right]$$
(4)

For isotropic models of plasticity the loading function can be represented by

$$\mathbf{F} = \mathbf{F}(\mathbf{h}, \mathbf{p}) \tag{5}$$

Consider the space $\{\sigma_i\}$ with **0** as the origin. Let the point **1** $(\sigma_1, \sigma_2, \sigma_3)$ represents the stress state σ . Let the point **2** is its orthogonal projection with regard to the Euclidean product onto trisector (Δ) defined by the unit vector with $(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$ as cosine directions. The distances $\overline{02}$ and $\overline{12}$ can by expressed as

$$\overline{\mathbf{02}} = \sqrt{3}\sigma \qquad \overline{12}^2 = \overline{01}^2 - \overline{02}^2 = 2h^2 \tag{6}$$

In the loading point space $\{\sigma_i\}$ the yield surface defined by F = 0 is the axisymmetric surface around the trisector (Δ) as illustrated in Figure 1.

The loading function F in the case of isotropic hardening materials is expressed in the form

$$\mathbf{F} = \mathbf{F} \left(\mathbf{h}, \mathbf{p}, \mathbf{\eta} \right) \tag{7}$$

where η is the hardening force describing the evolution of the yield surface in loading point space { σ_i }. In isotropic hardening the yield surface is derived through a homothety of center 0 in the loading point space { σ_i }. Then the hardening force η reduces to a scalar variable η which defines this homothety.

Fig. 1. Isotropic criteria of plasticity in the space $\{\sigma_i\}$

The expression (7) can be written as

$$\mathbf{F} = \mathbf{F}(\mathbf{h}, \mathbf{p}, \mathbf{\eta}) \tag{8}$$

The loading function given by (8) can be expressed as a homogeneous polynome of degree n with regard to h and η

$$F = F(h, p, \eta) = \eta^{n} F(h/\eta, p/\eta, 1)$$
(9)

where by convection η is specified as the ratio of the homothety that transforms the yield surface defined by $\eta = 1$ into the present yield surface. In kinematic hardening, the yield surfaces are defined from each other through a translation in the loading point space $\{\sigma_i\}$. The hardening force η reduces to a second-order symmetric tensor η that defines this translation

$$\mathbf{F} = \mathbf{F} \left[\mathbf{J}_{2s} \left(\boldsymbol{\sigma} + \boldsymbol{\eta} \right), \, \mathbf{J}_{1\sigma} \left(\boldsymbol{\sigma} + \boldsymbol{\eta} \right) \right] \tag{10}$$

In space $\{\sigma_i\}$ vector (η) represents the vector of translation that transforms the yield surface defined by $(\eta) = (0)$ into the present yield surface. Assume the convex loading function for the isotropic plastic material

$$F(h, p) = h + \alpha p - q \tag{11}$$

where α and q are material characteristics. The constant q is necessarily non-negative to ensure that the zero loading point satisfies F (0,0) \leq 0. The coefficient α is non-negative to describe an infinite tensile stress. The yield surface given by (11) is an axisymmetric surface around the trisector in principal stress space { σ_i }. If $\alpha = 0$ the loading function reduces to the Huber-Mises loading function.

The form of the Huber-Mises loading function is of the form

$$F = \frac{1}{\sqrt{3}}\sqrt{\sigma_{11}^2 + \sigma_{22}^2 + \sigma_{33}^2 - \sigma_{11}\sigma_{22} - \sigma_{22} - \sigma_{33} - \sigma_{33}\sigma_{11} + 3(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)} - q \quad (12)$$

and for principal directions

$$F = \frac{1}{\sqrt{3}} \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_3 \sigma_1} - q$$
(13)

The equivalent form of the Huber-Mises loading function is

$$F = \frac{1}{\sqrt{6}} \sqrt{\left(\sigma_{11} - \sigma_{22}\right)^2 + \left(\sigma_{22} - \sigma_{33}\right)^2 + \left(\sigma_{33} - \sigma_{11}\right)^2 + 6\left(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2\right)} - q \qquad (14)$$

or

$$F = \frac{1}{\sqrt{6}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} - q$$
(15)

The Huber-Mises loading function can be transformed to the equivalent forms if we introduce material parameter $q = \frac{1}{\sqrt{3}} \sigma_o$, where σ_o is the yield point of the material in uniaxial tension. Then the Huber-Mises loading function is expressed in the frequently met form:

$$F = \frac{1}{\sqrt{3}}\sqrt{\sigma_{11}^2 + \sigma_{22}^2 + \sigma_{33}^2 - \sigma_{11}\sigma_{22} - \sigma_{22} - \sigma_{33} - \sigma_{33}\sigma_{11} + 3(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)} - \frac{1}{\sqrt{3}}\sigma_o \quad (16)$$

$$F = \frac{1}{\sqrt{3}}\sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1\sigma_2 - \sigma_2\sigma_3 - \sigma_3\sigma_1} - \frac{1}{\sqrt{3}}\sigma_o$$
(17)

$$F = \frac{1}{\sqrt{6}} \sqrt{\left(\sigma_{11} - \sigma_{22}\right)^2 + \left(\sigma_{22} - \sigma_{33}\right)^2 + \left(\sigma_{33} - \sigma_{11}\right)^2 + 6\left(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2\right)} - \frac{1}{\sqrt{3}} \sigma_o \qquad (18)$$

or

$$F = \frac{1}{\sqrt{6}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} - \frac{1}{\sqrt{3}} \sigma_o$$
(19)

(20)

In order to present its geometrical interpretation, the Huber-Mises criterion is rewritten using principal stress deviator components as

Fig. 2. The Huber-Mises yield locus in the space $\{s_i\}$ of principal stress deviators

In the space $\{s_i\}$ the expression (19) represents spherical surface of the radius $h\sqrt{2}$. The points inside the spherical surface represent the elastic state. If the material is in a plastic range then the point (s) is on the surface of the sphere. In the space $\{\sigma_i\}$ of principal stresses the Huber-Mises yield criterion represents a circular cylinder with an axis of unit vector with $(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$ as the cosine directors.

In the space $\{\sigma_i\}$ of principal stresses the stress tensor and its isotropic or deviatoric part are described by three components so in this space can be treated as vectors.

$$\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$$
$$\boldsymbol{p} = (p, p, p) \tag{21}$$

$$\mathbf{s} = (\sigma_1 - \mathbf{p}, \sigma_2 - \mathbf{p}, \sigma_3 - \mathbf{p}) \tag{22}$$

where

$$\mathbf{p} = (\mathrm{tr} \, \boldsymbol{\sigma}/3) \, \mathbf{1} \tag{23}$$

The geometrical interpretation of an isotropic part of stress tensor is the trisector defined by the unit vector with $(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$ as cosine directors. Since

 $\sigma = s + p$, the deviatoric stress represents deviation of the stress σ from the axis of the cylinder, which is presented in Figure 3. A deviation of stress from the axis of the cylinder symmetry is the measure of material effort. This distance is

$$|s| = \sqrt{s_i s_i} = \sqrt{s_1^2 + s_2^2 + s_3^2}$$
 (24)

and is equal to the radius of the Huber-Mises cylinder.

Fig. 3. The Huber-Mises yield locus in the space $\{\sigma_i\}$ of principal stresses

In the case of a plane state of strain the Huber-Mises yield criterion represents in the space $\{\sigma_{11}, \sigma_{22}, \sigma_{12}\}$ an elliptic cylinder with the axis on the plane $\{\sigma_{11}, \sigma_{22}\}$ defined by a unit vector with $(1/\sqrt{2}, 1/\sqrt{2})$ as cosine directors (Fig. 4).

In the case of a plane state of stress the Huber-Mises yield criterion in the space $\{\sigma_1, \sigma_2\}$ is represented by an ellipse being the trace of the cross section of the Huber-Mises cylinder by the plane $\sigma_3 = 0$ (Fig. 5).

Fig. 4. The Huber-Mises yield locus for the plane state of strain in the space $\{\sigma_1 \times \sigma_{21} \times \sigma_{12}\}$

Fig. 5. The Huber-Mises yield locus for the plane state of stress in the space $\{\sigma_1\times\sigma_2\}$

Based on Eq. (19) the Huber-Mises yield criterion can be written as

$$|\sigma_1 - \sigma_2|^n + |\sigma_2 - \sigma_3|^n + |\sigma_3 - \sigma_1|^n = 2\sigma_o^n$$
 (25)

where n = 2. If $n \to \infty$ in Eq. (25) the yield criterion became the so-called the Treska yield criterion. According to the Treska criterion the loading function reads

$$F = \operatorname{Sup}_{i,j=1,2,3}(\sigma_i - \sigma_j)$$
(26)

The Treska yield criterion can be written as

$$\left[(\sigma_1 - \sigma_2)^2 - \sigma_o^2 \right] \left[(\sigma_2 - \sigma_3)^2 - \sigma_o^2 \right] \left[(\sigma_3 - \sigma_1)^2 - \sigma_o^2 \right] = 0$$
(27)

Fig. 6. The Treska yield criterion in the space $\{\sigma_i\}$

The geometrical interpretation of the Treska yield criterion is given in Figure 6. The Treska yield criterion for a plane state of stress is

$$\left(\sigma_{11} - \sigma_{22}\right)^2 + 4\sigma_{12}^2 = 4q^2 \tag{28}$$

It has the identical form as the Huber-Mises yield criterion (15) if we put $\sigma_{13} = \sigma_{23} = 0$ and $\sigma_3 = \frac{1}{2}(\sigma_{11} + \sigma_{22})$. The difference is when we change q onto σ_0 . For the Treska yield criterion

$$\sigma_{\rm o} = 2q \tag{29}$$

and for the Huber-Mises criterion

$$\sigma_{o} = \sqrt{3q} \tag{30}$$

The Treska yield criterion represents a prism inscribed in a Huber-Mises cylinder. Any plane orthogonal to the trisector, i.e. any deviatoric plane defined by $\sigma = \text{const}$ intersects with the loading surface along a regular hexagon. A comparison of the Huber-Mises and the Treska yield criteria in the space $\{\sigma_i\}$ is given in Figure 7 and on the plane of deviators in Figure 8. On the plane $\sigma_3 = 0$ representing a plane state of stress the Huber-Mises and the Treska yield criteria are presented in Figure 9.

Fig. 7. Comparison of the Huber-Mises and the Treska yield criteria in the space $\{\sigma_i\}$

Fig. 8. Comparison of the Huber-Mises and the Treska yield criteria on a plane of deviators; plane normal to the cylinder and prism axis

Fig. 9. Comparison of the Huber-Mises and the Treska yield criteria on a plane $\{\sigma_1, \sigma_2\}$

References

- [1] Baltow A., Sawczuk A., A rule of anisotropic hardening, Acta Mechanika 1965, 2, 1-11.
- [2] Bednarski T., Mechanics of plastic flow, Polish Scientific Publishers, Warsaw 1995.
- [3] Drucker D.C., Some implications of work hardening and ideal plasticity, Quart Appl. Math. 1950, 7, 411-418.
- [4] Drucker D.C., On uniqueness in the theory of plasticity, Quart Appl. Math. 1956, 14, 35-42.
- [5] Drucker D.C., A definition of stable inelastic material, J. Appl. Mech. 1959, 26, 101-106.
- [6] Drucker D.C., Prager W., Soil mechanics and plastic analysis of limit design, Quart Appl. Math. 1962, 10, 157-165.
- [7] Drucker D.C., On the postulate of stability of material in the mechanics of continua, Journal de Mécanique 1964, 3, 235-249.
- [8] Hill R., The mathematical theory of plasticity, Clarendon Press, Oxford 1956.
- [9] Hoffman O., Sachs G., Introduction to the theory of plasticity for engineers, McGraw-Hill Book Company, New York 1953.

- [10] Johnson W., Mellor P.B., Engineering plasticity, Van Nostrand Reinhold Company, London 1973.
- [11] Malinin N.N., The theory of plasticity and creep, Maszinostrojenije, Moscow 1975 (in Russian).
- [12] Marciniak Z., Mechanics of sheet forming, Polish Scientific Publishers, Warsaw 1961 (in Polish).
- [13] Mises R., Mechanik der festen Körper in plastisch deformablem Zustand, Götinger Nachrichten 1913.
- [14] Perzyna P., Theory of viscoplasticity, Polish Scientific Publishers, Warsaw 1966 (in Polish).
- [15] Perzyna P., Thermodynamics of non-elastic materials, Polish Scientific Publishers, Warsaw 1978.
- [16] Pokorska I., Deformation of powder metallurgy materials in cold and hot forming, Journal of Materials Processing Technology 2008, 196, 1-3, 15-32.
- [17] Pokorska I., Modeling of powder metallurgy processes, Advanced Powder Technology 2007, 18, 5, 503-539.
- [18] Pokorska I., Modele sztywno-plastycznych porowatych materiałów budowlanych, ZN Politechniki Częstochowskiej 2004 nr 158, Budownictwo 10, 137-141.
- [19] Pokorska I., Modelling of isotropic and kinematic hardening in porous materials, ZN Politechniki Częstochowskiej 2004 nr 158, Budownictwo 10, 143-156.
- [20] Pokorska I., Material hardening in porous lightweight structure undergoing thermomechanical loading, Lightweight Structures in Civil Engineering, International Seminar of IASS Polish Chapter, Warsaw 2004, 175-179.
- [21] Sawczuk A., Mechanics and plasticity of structures, Polish Scientific Publishers and Ellis Horwood Limited 1989.
- [22] Skrzypek J., Plasticity and Creep, Polish Scientific Publishers, Warsaw 1986.
- [23] Slater R.A.C., Engineering plasticity, Wiley, New York Toronto 1977.
- [24] Sluzalec A., Theory of metal forming plasticity, Springer, 2004.
- [25] Tayler G.J., Quinney H., The plastic distortion of metals, Phil. Trans. Roy. Soc. 1931, A230.

Abstract

The purpose of the paper is to compare two basic yield criteria met in engineering mechanics i.e. Huber-Mises and Treska. The various forms of the yield locus are presented and discussed. The paper has a review character.

Streszczenie

Artykuł przedstawia analizę porównawczą dwóch kryteriów plastyczności, tj. Hubera-Misesa i Treski. Zaprezentowano różne postacie warunków plastyczności. Praca ma charakter przeglądowy.