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COMPARISON OF HUBER-MISES AND TRESKA 
YIELD CRITERIA 

The purpose of the paper is to compare the Huber-Mises and Treska yield crite-
ria. The paper has a review character. The Huber-Mises and Treska yield criteria 
are the most often used in engineering practice. The literature on various forms 
of yield conditions is broad (see [1-25], for instance). In isotropic material the load- 
ing function F involves the principal components of symmetric stress tensor , i.e. 
the three principal stresses 1, 2 and 3. The principal stresses can be expressed 
in terms of the three first invariants of the stress tensor. We denote the first in- 
variant of the stress tensor by J1, the second invariant of the stress deviator tensor 
s =  – (tr /3)1 by J2s and the third invariant of the stress deviator tensor by J3s 
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By (2) we have 
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For isotropic models of plasticity the loading function can be represented by 

 F = F (h, p) (5) 

Consider the space {i} with 0 as the origin. Let the point 1 (1, 2, 3) represents 
the stress state . Let the point 2 is its orthogonal projection with regard to the Eucli- 

dean product onto trisector () defined by the unit vector with  31,31,31  

as cosine directions. The distances 02  and 12  can by expressed as 
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In the loading point space {i} the yield surface defined by F = 0 is the axisym-
me- tric surface around the trisector () as illustrated in Figure 1. 

The loading function F in the case of isotropic hardening materials is expressed 
in the form 

 F = F (h, p, ) (7) 

where  is the hardening force describing the evolution of the yield surface in load- 
ing point space {i}. In isotropic hardening the yield surface is derived through 
a homothety of center 0 in the loading point space {i}. Then the hardening force  
reduces to a scalar variable  which defines this homothety. 
 

 
Fig. 1. Isotropic criteria of plasticity in the space {i} 

The expression (7) can be written as 

 F = F (h, p, ) (8) 

The loading function given by (8) can be expressed as a homogeneous polynome 
of degree n with regard to h and  

 F = F (h, p, ) = n F (h/, p/, 1) (9) 

where by convection  is specified as the ratio of the homothety that transforms the 
yield surface defined by  = 1 into the present yield surface. In kinematic hardening, 
the yield surfaces are defined from each other through a translation in the loading 
point space {i}. The hardening force  reduces to a second-order symmetric ten-
sor  that defines this translation 

 F = F [J2s ( + ), J1 ( + )] (10) 



Comparison of Huber-Mises and Treska yield criteria 

 

129

In space {i} vector () represents the vector of translation that transforms the yield 
surface defined by () = (0) into the present yield surface. 
Assume the convex loading function for the isotropic plastic material  

 F (h, p) = h +  p – q  (11) 

where  and q are material characteristics. The constant q is necessarily non-nega-
tive to ensure that the zero loading point satisfies F (0,0)  0. The coefficient  is 
non-negative to describe an infinite tensile stress. The yield surface given by (11) is 
an axisymmetric surface around the trisector in principal stress space {i}. If  = 0 
the loading function reduces to the Huber-Mises loading function. 

The form of the Huber-Mises loading function is of the form 
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and for principal directions 
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The equivalent form of the Huber-Mises loading function is 
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The Huber-Mises loading function can be transformed to the equivalent forms if we 

introduce material parameter o3
1q  , where o is the yield point of the material 

in uniaxial tension. Then the Huber-Mises loading function is expressed in the fre-
quently met form: 
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or 
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In order to present its geometrical interpretation, the Huber-Mises criterion is re-
written using principal stress deviator components as 
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Fig. 2. The Huber-Mises yield locus in the space {si} of principal stress deviators 

In the space {si} the expression (19) represents spherical surface of the radius 
h .2  The points inside the spherical surface represent the elastic state. If the mate-
rial is in a plastic range then the point (s) is on the surface of the sphere. In the 
space {i} of principal stresses the Huber-Mises yield criterion represents a circular 

cylinder with an axis of unit vector with  3/1,3/1,3/1  as the cosine directors. 

In the space {i} of principal stresses the stress tensor and its isotropic or devia-
toric part are described by three components so in this space can be treated as vec-
tors. 

 = (1, 2, 3) 

 p = (p, p, p) (21) 

 s = (1 – p, 2 – p, 3 – p) (22) 

where 

 p = (tr /3) 1 (23) 

The geometrical interpretation of an isotropic part of stress tensor is the trisector 

defined by the unit vector with  3/1,3/1,3/1  as cosine directors. Since 
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 = s + p, the deviatoric stress represents deviation of the stress  from the axis 
of the cylinder, which is presented in Figure 3. A deviation of stress from the axis 
of the cylinder symmetry is the measure of material effort. This distance is 
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and is equal to the radius of the Huber-Mises cylinder. 
 

 
Fig. 3. The Huber-Mises yield locus in the space {i} of principal stresses 

In the case of a plane state of strain the Huber-Mises yield criterion represents 
in the space {11, 22, 12} an elliptic cylinder with the axis on the plane {11, 22} 

defined by a unit vector with  21,21  as cosine directors (Fig. 4). 
In the case of a plane state of stress the Huber-Mises yield criterion in the space 

{1, 2} is represented by an ellipse being the trace of the cross section of the Hu-
ber-Mises cylinder by the plane 3 = 0 (Fig. 5). 
 

 
Fig. 4. The Huber-Mises yield locus for the plane state of strain in the space {1  21  12} 
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Fig. 5. The Huber-Mises yield locus for the plane state of stress in the space {1  2} 

Based on Eq. (19) the Huber-Mises yield criterion can be written as 
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where n = 2. If n   in Eq. (25) the yield criterion became the so-called the Treska 
yield criterion. According to the Treska criterion the loading function reads 

  ji3,2,1j,iSupF    (26) 

The Treska yield criterion can be written as 
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Fig. 6. The Treska yield criterion in the space {i} 
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The geometrical interpretation of the Treska yield criterion is given in Figure 6. 
The Treska yield criterion for a plane state of stress is 
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It has the identical form as the Huber-Mises yield criterion (15) if we put 13 = 23 = 0 

and  22113 2

1
 . The difference is when we change q onto o . For the Treska 

yield criterion 

 o = 2q (29) 

and for the Huber-Mises criterion 

 q3o    (30) 

The Treska yield criterion represents a prism inscribed in a Huber-Mises cylinder. 
Any plane orthogonal to the trisector, i.e. any deviatoric plane defined by  = const 
intersects with the loading surface along a regular hexagon. A comparison of the 
Huber-Mises and the Treska yield criteria in the space  i  is given in Figure 7 

and on the plane of deviators in Figure 8. On the plane 3 = 0 representing a plane 
state of stress the Huber-Mises and the Treska yield criteria are presented in Figu-
re 9. 

 

 
Fig. 7. Comparison of the Huber-Mises and the Treska 

yield criteria in the space {i} 
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Fig. 8. Comparison of the Huber-Mises and the Treska yield criteria on a plane 
of deviators; plane normal to the cylinder and prism axis 

 

Fig. 9. Comparison of the Huber-Mises and the Treska yield criteria on a plane {1, 2} 
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Abstract 

The purpose of the paper is to compare two basic yield criteria met in engineering mechanics i.e. 
Huber-Mises and Treska. The various forms of the yield locus are presented and discussed. The paper 
has a review character. 

Streszczenie 

Artykuł przedstawia analizę porównawczą dwóch kryteriów plastyczności, tj. Hubera-Misesa i Tre- 
ski. Zaprezentowano różne postacie warunków plastyczności. Praca ma charakter przeglądowy. 


