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INTERPRETATION OF ISOTROPIC 
AND KINEMATIC HARDENING OF MATERIALS 

The literature on different forms of hardening of materials is broad (see [1-25], 
for instance). The present paper analyses two basic types of hardening i.e. kinema-
tic and isotropic. The interpretation of loading functions on plane is important for 
proper understanding of the problem, so in this paper this was the main assumption 
in preparing the manuscript. The stress  at any loading state characterizes any open 
elementary system. The loading point () in the stress space {} represents the pre- 
sent loading state. Denote the domain of elasticity in initial state by ED . It contains 
the zero loading point () = (0). In the elasticity domain the strain increase remains 
reversible or elastic, for any path of the loading point () starting from the origin of 
space and lying inside this domain (Fig. 1). 

A hardening frozen energy is absent in ideal plastic material without any harden- 
ing effect. The initial domain of elasticity for this material is not changed by the 
appearance of plastic strain. The elasticity domain is identical to the initial domain, 
and the loading point () cannot leave this domain (Fig. 1). If the loading point is 
and remains on the boundary of the elasticity domain ED as illustrated by the loading 
path 12 in Figure 1. then the evolutions of plastic strain occur. Consider a loading 
path leaving the boundary towards the interior of domain ED. It can be for instance 
the path 23 in Figure 1 corresponding to a purely elastic evolution of the elementary 
system. It corresponds to an elastic unloading. 
 

 
Fig. 1. Elasticity domain of ideal plastic material 
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The elasticity domain is defined by a scalar function F. It is called the loading 
function and has  as its arguments. It is such that F () < 0 represents the interior 
of domain ED, F () = 0 represents the boundary of domain ED and F () > 0 repre- 
sents the exterior of domain ED. The criterion F () < 0 is the elasticity criterion. 
The criterion F () = 0 is the plasticity criterion. The surface in the space of load-
ing points {}, defined by F () = 0, represents the boundary of domain ED and is 
called the yield locus. The plastically admissible loading state () satisfies the cri-
terion F ()  0. 

The elasticity domain for hardening materials is altered by the appearance of 
plastic strain. In the space {} of loading points, the present elasticity domain is 
defined as the domain arisen by the set of elastic unloading paths, or reversible load- 
ing paths, which issue from a present loading point 2, as path 23 in Figure 2. 
 

 

Fig. 2. Elasticity domains of hardening material 

The present loading point is not necessarily on the boundary of the present elas- 
ticity domain, such as point 3 in Figure 2. There still exists an initial elasticity domain 
but, as soon as the loading point () reaches for the first time the boundary of the 
initial elasticity domain (point 1), further loading can deform this domain while 
carrying it along (loading path 12). This is the phenomenon of hardening. The present 
elasticity domain depends not only on the present loading point (), but also on the 
loading path followed before, and thus on the hardening state. 

Consider the domain of elasticity in the present state ED. It is defined by a scalar 
loading function F, with arguments  and with some hardening parameters represen- 
ted by hardening force . For the hardening material, it is such that F (, ) < 0 re-
presents the interior of domain ED, F (, ) = 0 represents the boundary of domain 
ED, F (, ) > 0 represents to the exterior of domain ED. The criterion of elasticity 
is expressed by F (, ) < 0. The plasticity threshold or criterion is expressed by F 
(, ) = 0. The surface defined by F (, ) = 0, in the space of loading points {}, 
representing the boundary of the present domain ED is called the present yield locus. 

We say that a loading state () the plastically admissible in the present state if it 
satisfies the criterion F (, )  0. 
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The loading function F considered in the space {  } by the equation F (, )  0 
defines a generalized elasticity domain E, which is now fixed as in ideal plasticity 
and which the generalized loading point (, ) cannot escape. The present elasticity 
domain ED, as previously defined in the space {}, appears in the extended space 
{  } as the intersection of the fixed domain E with the hyperplane  = present , 
where present is the present value of hardening force . Note that, owing to harden- 
ing phenomena, the origin O = (0) of space {} may become outside the present 
elasticity domain, as illustrated in Figure 4. 
Consider hardening parameters. A zero hardening force ( = 0) corresponds to a ma- 
terial state without any hardening history. The origin O = (0, 0) in space {  } 
necessarily belongs to the extended elasticity domain E, since it corresponds to 
a material without any loading history. The loading paths 01, 12 and 23 in space 
{}, as represented in Figure 3 can be simply interpreted in the space {  }. The 
loading path 01 corresponds to an elastic evolution from the virgin state ( =  = 0), 
without evolution of the hardening state (d = 0). Therefore, the loading path 01 in 
the space {} corresponds to the loading path 01 in the space {  }. At point 1 
the plasticity criterion is satisfied, and loading path 12 corresponds to a plastic evo- 
lution during which the loading point carries along the elasticity domain ED, while 
deforming it. 
 

 
Fig. 3. Elasticity domains in the space {  } 

The hardening state is modified and the plasticity criterion F = 0 is constantly satis- 
fied during this evolution. Hence, in the space {  } the loading point moves on 
the boundary of the fixed domain E from point 1 to point 2. The loading path 23 co- 
rresponds to an elastic unloading without evolution of the hardening state (d = 0). 
Therefore, the hardening force  keeps the value 2 reached at point 2. The loading 
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path 23 in the space {} corresponds to the loading path 23 in the space {  }, 
as illustrated in Figure 3. 

The present elasticity domain ED depends on the present value of the hardening 
force . This dependency is the basis of their experimental identification. To be use- 
ful in practice, models must involve a few hardening variables, which correspond 
to a few components for vector . For this purpose, simple hardening models have 
been designed. 

The first one is the isotropic hardening model. In this model the elasticity domain 
in space {} is transformed by a homothety centred at the origin, as illustrated in 
Figure 4. The hardening force is reduced to a single scalar parameter  required to 
characterize this homothety. 

The second one is the kinematic hardening model. In this model the boundaries 
in space {} of the elasticity domain are obtained through a translation of the boun- 
dary of the initial domain. The hardening variables are the variables characterizing 
this translation. They reduce to a tensor parameter  relative to the translation with 
respect to the stress tensor (Fig. 4). The two previous hardening models can also 
be combined to yield an isotropic and kinematic hardening model, as illustrated in 
Figure 4. As defined in this section, the hardening force  represents only a set of 
variables well suited for mathematical description of the observed evolution of the 
elasticity domain, and thus may not yet be considered as a thermodynamic force. 
 

 
Fig. 4. Hardening models 

The initial and present elasticity domains are convex. This property of convexity 
constitutes one of the sufficient criterions for the stability of plastic materials. In 
the loading point space {  }, the fundamental geometrical property of a convex 
domain is that all points of a segment of a line that joins two points on the boundary 
of the domain lie inside this domain. 
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Abstract 

The purpose of the paper is to discuss the hardening problems in materials. Kinematic and iso- 
tropic hardening are considered. The paper has a review character. 

Streszczenie 

W pracy przedyskutowano problemy wzmocnienia materiałów. Analizowano zarówno wzmoc- 
nienie kinematyczne, jak i izotropowe. Praca ma charakter przeglądowy. 


