Halina Kubiak

UTRATA STATECZNOŚCI POWŁOKI STALOWEJ KONSTRUKCJI DWUWARSTWOWEJ STALOWO-BETONOWEJ, PODDANEJ OBCIĄŻENIU OD SPRĘŻANIA BETONU

Wprowadzenie

Analizowana jest ściana zbiornika zespolonego stalowo-betonowego lub osłony biologicznej reaktora jądrowego, której wewnętrzną warstwę stanowi płaszcz stalowy.

1. Cel i zakres pracy

Celem pracy jest obliczenie krytycznej siły obwodowej p_{kr} powodującej utratę stateczności płaszcza stalowego. Obliczenia takie są konieczne ze względu na prawidłowe sprężanie warstwy betonowej, tj. uniknięcie zniszczenia płaszcza stalowego. Rozwiązanie zostało przeprowadzone przy następujących założeniach:

- 1. Zewnętrzna warstwa obciążona jest statycznie działającą siłą sprężającą.
- Osiowa siła ściskająca przyłożona jest do warstwy zewnętrznej po całym przekroju.
- 3. Dla stali stosuje się liniową hipotezę plastyczności.
- Materiał warstwy zewnętrznej (beton) jest sprężysto-plastyczny, izotropowy. Zakłada się, że beton pracuje wg liniowej lub zlinearyzowanej hipotezy wytrzymałościowej.
- 5. Płaszcz stalowy obciążony jest jedynie w kierunku poprzecznym.
- 6. Obydwie warstwy współpracują ze sobą jedynie na zasadzie docisku (nie uwzględnia się łączników).
- 7. Zależności pomiędzy naprężeniami a odkształceniami są zgodne z prawem Hooke'a tak dla warstwy płaszcza stalowego, jak i dla warstwy betonu.
- W stanie granicznym warstwa betonowa naciska na płaszcz stalowy, w związku z czym ścianka płaszcza stalowego znajduje się w płaskim stanie naprężeń (dwuosiowe ściskanie).

- 9. Reakcja płaszcza stalowego odpowiednio oddziałuje na warstwę betonową, skutkiem czego znajduje się ona (beton) w stanie trójosiowego nierównomiernego ściskania.
- 10. W związku ze statyczną niewyznaczalnością układu warstw występuje możliwość odspojenia płaszcza jedynie do wewnątrz konstrukcji.

Rys. 1. Schemat działania rozpatrywanych sił na ścianę reaktora jądrowego

2. Rozwiązanie

2.1. Model matematyczny

Model matematyczny dla układu przedstawionego na rysunku 1 i zgodnego z ww. założeniami zapisano [1] w postaci:

$$\rho \frac{d\sigma_{\rho}}{d\rho} + \sigma_{\rho} - \sigma_{\Theta} = 0 \tag{1}$$

$$\sigma_1 - \sigma_3 - f_{vd} = 0 \tag{2}$$

$$\sigma_1 - f_c^{"} - \gamma \sigma_3 = 0 \tag{3}$$

$$\varepsilon_s - \varepsilon_c = 0 \tag{4}$$

$$\varepsilon = \frac{1}{E} \left[\sigma_z - \nu \left(\sigma_\rho + \sigma_\Theta \right) \right] \tag{5}$$

52

Równanie (1) to różniczkowe równanie równowagi Lamégo-Clapeyrona dla sił statycznych. W równaniu tym:

- ρ oznacza bieżący promień warstwy stalowej $r \le \rho \le R$,
- $\sigma_{
 ho}$ naprężenie promieniowe w warstwie stalowej odpowiednie dla ho,

 σ_{Θ} - naprężenie obwodowe w warstwie stalowej.

Równanie (2) to opis hipotezy wytężeniowej (Treski-Saint-Venanta), gdzie:

 f_{yd} - wytrzymałość stali,

 σ_1, σ_3 - ekstremalne naprężenia główne.

Równanie (3) to hipoteza wytrzymałościowa betonu dla drążonego elementu osiowosymetrycznego [4], przy czym

 $f_c^{"}$ - wytrzymałość betonu przy dwuosiowym równomiernym ściskaniu opisuje zależność:

$$f_c'' = 0.6(f_{cd} - f_{ctm}) + \sqrt{16(f_{cd} - f_{ctm})^2/45 + 2f_{cd}f_{ctm}/3}$$
(6)

w której:

 f_{cd}, f_{ctm} - odpowiednio wytrzymałość betonu na ściskanie i rozciąganie,

 γ - współczynnik efektywności ciśnienia bocznego dla elementów drążonych

$$\gamma = \frac{K \beta_c^2}{\beta_c^2 - 1} \left(1 + \frac{2 \ln \left| 1/\beta_c \right|}{\beta_c^2 - 1} \right)$$
(7)

gdzie K jest współczynnikiem efektywności ciśnienia bocznego dla betonu w stanie trójosiowego walcowego ściskania, K=4 w pierwszym przybliżeniu. W następnych przybliżeniach zgodnie z [3]:

$$K = 10 - 100 \cdot \sigma_0 / (f_{cd} + 15 \cdot \sigma_0)$$
(8)

 $\begin{array}{ll} \beta_c = \frac{D_c}{d_c} & - \text{ stosunek średnic elementu drążonego (warstwy betonowej)} \\ \varepsilon_s, \varepsilon_c & - \text{ względne odkształcenia betonu i stali} \\ E & - \text{ moduł sprężystości} \\ \sigma_z, \sigma_\rho, \sigma_\Theta & - główne naprężenia w układzie współrzędnych walcowych} \\ V & - \text{ współczynnik Poissona} \end{array}$

2.2. Obliczenie stateczności płaszcza stalowego

Obliczenie stateczności płaszcza stalowego przeprowadzono poprzez analizę pierścienia obciążonego równomiernym obciążeniem radialnym jak na rysunku 2. Rysunek przedstawia zachowanie się płaszcza stalowego w przypadku braku ograniczenia ruchu (gdyby chwilowo nie było warstwy betonowej).

53

Rys. 2. Schemat połowy pierścienia kołowego poddanego równomiernemu ściskaniu

Chcąc obliczyć obciążenie σ_{kr} (krytyczne ciśnienie równomierne), przeprowadzono zgodnie z [4] następującą analizą:

Założono, że wystąpiło nieznaczne wychylenie pierścienia z pierwotnej kolistej postaci równowagi. Wtedy krytyczną wartością ciśnienia równomiernego jest wielkość ciśnienia potrzebnego do utrzymania pierścienia w nieznacznie odkształconej postaci.

Na rysunku 2 pokazano połowę pierścienia. Linia przerywana wskazuje początkową kolistą postać pierścienia. Linią pełną oznaczono nieznacznie odkształcony pierścień, na który działa równomiernie rozłożone obciążenie. Za [4] przyjęto, że AB i OD są osiami symetrii wyboczonego pierścienia. Działanie usuniętej dolnej części pierścienia zastąpiono ściskającą siłą osiową S i momentem zginającym M_0 przyłożonymi w przekrojach A i B. Jeżeli ω_0 jest przemieszczeniem radialnym w punktach A i B, a σ równomiernym ciśnieniem normalnym na jednostkę osi pierścienia, to siłę ściskającą w A i B można obliczyć z zależności:

$$\sum Y = 0 \tag{9}$$

Co pozwala napisać:

$$S = \sigma \cdot (R - \omega_0) \tag{10}$$

Moment zginający w dowolnym przekroju poprzecznym C odkształconego pierścienia (po pominięciu kwadratów małych wielkości ω_0 i ω) jest równy:

$$M = M_0 - \sigma \cdot R \cdot (\omega_0 - \omega) \tag{11}$$

Korzystając z różniczkowego równania linii ugięcia cienkiego pręta o osi kolistej, można napisać:

$$\frac{d^2\omega}{d\theta^2} + \omega \cdot \left(1 + \frac{\sigma \cdot R^3}{EI}\right) = \frac{-M_0 \cdot R^2 + \sigma \cdot R^3 \cdot \omega_0}{EI}$$
(12)

Ogólne rozwiązanie powyższego równania otrzymujemy w postaci:

$$\omega = A_1 \cdot \sin k\theta + A_2 \cdot \cos k\theta + \frac{-M_0 \cdot R^2 + \sigma \cdot R^3 \cdot \omega_0}{EI + q \cdot R^3}$$
(13)

gdzie:

$$k^2 = 1 + \frac{\sigma \cdot R^3}{EI} \tag{14}$$

Wykorzystując warunki brzegowe dla symetrii:

$$\left(\frac{d\omega}{d\theta}\right)_{\theta=0} = 0$$
 symetria względem osi AB (15)

$$\left(\frac{d\omega}{d\theta}\right)_{\theta=\frac{\pi}{2}} = 0$$
 symetria względem osi OD (16)

Z pierwszego warunku mamy $A_1 = 0$, z drugiego otrzymujemy:

$$\sin\frac{k\pi}{2} = 0\tag{17}$$

Uwzględniając warunek, że dla każdego kąta θ przemieszczenie

$$\omega \ge 0 \tag{18}$$

(założono znak plus przemieszczenia do wewnątrz łuku, ze względu na opór betonowej ściany możliwy jest ruch płaszcza stalowego jedynie dodatni).

Najmniejszym różnym od zera pierwiastkiem (17) jest $k \cdot \pi/2 = \pi$, czyli k = 2, ze względu na warunek przemieszczeniowy nie bierzemy jednak pod uwagę tego pierwiastka, ponieważ nie spełnia warunku równania (18).

Następnym pierwiastkiem spełniającym zarówno równanie (17), jak i warunek (18) jest $k \cdot \pi/2 = 2 \cdot \pi$, czyli k = 4.

Po podstawieniu do wyrażenia (14) uzyskamy następującą wartość krytyczną ciśnienia:

$$\sigma_{kr} = \frac{15 \cdot EI}{R^3} \tag{19}$$

Jak widać, ciśnienie krytyczne dla płaszcza stalowego znajdującego się wewnątrz betonowej obudowy jest pięciokrotnie większe od ciśnienia krytycznego swobodnej rury.

Na rysunku 3 przedstawiono wyboczenie powierzchni płaszcza stalowego pod wpływem obliczonej krytycznej wartości ciśnienia σ_{kr} .

Rys. 3. Wyboczenie powierzchni płaszcza stalowego pod wpływem obciążenia krytycznego

W interesującym nas przypadku - rury kołowej, poddanej działaniu równomiernego ciśnienia zewnętrznego, wyrażenie (19) przyjmuje postać:

$$q_{kr} = \frac{5 \cdot E}{4 \cdot (1 - \nu^2)} \cdot \left(\frac{h}{R}\right)^3 \tag{20}$$

Biorąc pod uwagę, że siła ściskająca w elementarnym pierścieniu o szerokości jednostkowej wynosi $q \cdot R$, gdzie q jest wartością równomiernego ciśnienia, otrzymujemy krytyczną wartość siły ściskającej:

$$S_{kr} = \frac{5 \cdot E \cdot h^3}{4 \cdot (1 - \nu^2) \cdot R^2}$$
(21)

zaś naprężenia krytyczne:

$$\sigma_{kr} = \frac{5 \cdot E}{1 - \nu^2} \cdot \left(\frac{h}{R}\right)^2 \tag{22}$$

2.3. Obliczenie krytycznego obciążenia sprężającego

Chcąc obliczyć krytyczne obciążenie sprężające p_{kr} , wykorzystano wyprowadzoną w [5] zależność pomiędzy naprężeniami występującymi na styku beton-stal σ_o a obciążeniem obwodowym p_{et} :

$$\sigma_{o} = \frac{f_{yd} + \alpha \left[p_{et} \left(\gamma + \frac{v_{c} \beta_{c}}{\beta_{c} - 1} \right) - f_{c}^{"} - p_{el} \right]}{\alpha \left[\gamma + v_{c} \left(2 - \beta_{c} \right) / \beta_{c} - 1 \right] + 2} \left\{ 1 - \beta^{-\frac{\alpha \left[\gamma + v_{c} \left(2 - \beta_{c} \right) / \beta_{c} - 1 \right] \right] + 2}{1 + v_{s}}} \right\}$$
(23)

z czego wynika:

$$p_{kr} = \left\{ \left[\frac{\sigma_{kr} \cdot A}{1 - \beta^{-A/(1+\nu_s)}} - f_{yd} \right] \cdot \frac{1}{\alpha} + f_c^{"} + p_{el} \right\} \cdot \frac{1}{B}$$
(24)

gdzie:

$$A = \alpha \cdot \left[\gamma + \nu_c \cdot \frac{(2 - \beta_c)}{(\beta_c - 1)} \right] + 2$$
(25)

$$B = \left[\gamma + \frac{\nu_c \cdot \beta_c}{(\beta_c - 1)}\right] \tag{26}$$

Wnioski

Wyprowadzone zależności (24-26) pozwalają na obliczenia krytycznego obciążenia "obciskającego", które ma decydujące znaczenie podczas sprężania betonu.

Literatura

- [1] Łuksza L.K., Procznost' trubobetona, Wyd. Wyszejszaja Szkoła, Minsk 1990.
- [2] Łuksza L.K., Gałkowska M., Wytrzymałość ściskano-skręcanych dwuwarstwowych elementów zespolonych z rdzeniem o przekroju ciągłym, Kompozyty, konstrukcje warstwowe, II Sympozjon. Referaty, Wrocław-Karpacz 2002, 145-150.
- [3] Łuksza L.K., Podstawy teorii obliczania wytrzymałości konstrukcji rurobetonowych, ZN Politechniki Częstochowskiej 1997 nr 151, seria Budownictwo 7, 71-79.
- [4] Timoshenko S.P., Gere J.M., Teoria stateczności sprężystej, Arkady, Warszawa 1963.
- [5] Kubiak H., Stan graniczny dwuwarstwowej powłoki stalowo-betonowej obciążonej siłami zewnętrznymi, ZN Politechniki Częstochowskiej 2008 nr 164, seria Budownictwo 14, 65-71.

Streszczenie

W pracy przedstawiono sposób obliczenia obwodowej siły krytycznej, powodującej utratę stateczności płaszcza stalowego, stanowiącego wewnętrzną warstwę dwuwarstwowej konstrukcji zespolonej, stalowo-betonowej. Przeprowadzono rozwiązanie analityczne dla materiałów pracujących w zakresie sprężysto-plastycznym.

Abstract

This paper presents calculation of circumferential buckling load for steel mantle being an internal layer of two-layer combined concrete-steel construction. An analytical solution for materials working in elastic-plastic range has been presented.