PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fotokataliza w oczyszczaniu i dezynfekcji wody część I. Podstawy teoretyczne

Autorzy
Identyfikatory
Warianty tytułu
EN
Photocatalysis in the treatment and disinfection of water Part I. Theoretical backgrounds
Języki publikacji
PL
Abstrakty
PL
Proces fotokatalizy należy do wysoko-zaawansowanych technik utleniania o możliwościach usuwania trwałych związków organicznych i mikroorganizmów z wody. Jest to technologia o dużym potencjale, niskich kosztach, przyjazna dla środowiska oraz o cechach zrównoważonego rozwoju i "zerowym" odprowadzaniu odpadów w przemysłowych systemach wodno-ściekowych. W chwili obecnej, główne bariery techniczne, które ograniczają pełną komercjalizację metody są związane z zagospodarowaniem cząstek katalizatora po uzdatnianiu wody (ścieków). W pracy przedstawiono podstawy teoretyczne procesu oraz mechanizmy foto- -utlenienia zanieczyszczeń organicznych i mikrobiologicznych. Dokonano również przeglądu ostatnich postępów w badaniach inżynierii foto-katalizatorów, systemów foto-reaktorów oraz kinetykę foto-mineralizacji i foto-dezynfekcji i ich modelowanie związane z procesami foto-katalitycznego oczyszczania wody (ścieków). Omówiono szereg potencjalnych i komercyjnych konfiguracji reaktorów foto-katalitycznych, w szczególności membranowych reaktorów foto-katalitycznych oraz wpływ parametrów operacyjnych i jakości wody na efektywność mineralizacji i dezynfekcji.
EN
Photo-catalysis process belongs to a advanced oxidation technology for the removal of persistent organic compounds and microorganisms from water. It is the technology with a great potential, a low-cost, environmental friendly and sustainable treatment technology to align with the "zero" waste scheme in the water/wastewater industry. At present, the main technical barriers that impede its full commercialization remained on the post-recovery of the catalyst particles after water treatment. This paper reviews the background of the process and photo-oxidation mechanisms of the organic pollutants and microorganisms. The review of the latest progresses of engineered-photo-catalysts, photo-reactor systems, and the kinetics and modeling associated with the photo-catalytic and photo-disinfection water and wastewater treatment process, has been presented. A number of potential and commercial photo-catalytic reactor configurations are discussed, in particular the photo-catalytic membrane reactors. The effects of key photo-reactor operation parameters and water quality on the photo-process performances in terms of the mineralization and disinfection are assessed.
Czasopismo
Rocznik
Tom
Strony
18--33
Opis fizyczny
Bibliogr. 126 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] Malato S., Fernandez-Ibanez P., Maldonado M.I., Blanco J., Gernjak W., Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal.Today, 147 (2009) 1-59.
  • [2] Chong M.N., Jin B., Chow C.W.K., Saint C., Recent developments in photocatalytic water treatment technology: A review, Water Research, 44 (2010) 2997 – 3027.
  • [3] Bodzek M., Konieczny K., Wykorzystanie technik membranowych w uzdatnianiu wody do picia. Cz.I. Usuwanie związków nieorganicznych, Technologia Wody, nr 1 (03) (2010) 9-21,26; cz.II – Usuwanie związków organicznych, Technologia Wody, nr 2(04) (2010) 15-31.
  • [4] Matilainen A., Sillanpää M., Removal of natural organic matter from drinking water by advanced oxidation processes, Chemosphere, 80 (2010) 351–365.
  • [5] Nawrocki J., Uboczne produkty utlenienia i dezynfekcji wody, Ochrona Środowiska, 27(4) (2005) 3-12.
  • [6] Bodzek M., Konieczny K., Wykorzystanie procesów membranowych w uzdatnianiu wody, Oficyna Wydawnicza Projprzem-Eko, Bydgoszcz 2005.
  • [7] Likodimos V., Dionysiou D.D., CLEAN WATER: water detoxification using innovative photocatalysts, Rev. Environ. Sci. Biotechnol., 9 (2010) 87–94.
  • [8] Dalrymplea O. K., Stefanakos E., Trotz M.A., Goswami D.Y., A review of the mechanisms and modeling of photocatalytic disinfection, Applied Catalysis B: Environmental, 98 (2010) 27–38.
  • [9] Mozia S ., P hotocatalytic membrane reactors (PMRs) i n water and wastewater treatment. A review, Separation and Purification Technology, 73 (2010) 71–91.
  • [10] Al-Rasheed R .A., Water t reatment by heterogeous photocatalysis. An Overview, Presented at 4th SWCC Acquired Experience Symposium held in Jeddah, Arabia Saudyjska, 2005.
  • [11] Malato S., Blanco J., Alarcon D.C., Maldonado M.I., Fernandez-Ibanez P., Gernjak W., Photocatalytic decontamination and disinfection of water with solar collectors, Catal. Today, 1 22 (2007) 137–149.
  • [12] Carp O., Huisman C.L., Reller A., Photoinduced reactivity of titanium dioxide, Progr Solid State Chem., 32 (2004) 33–177.
  • [13] Di Valentin C., Finazzi E., Pacchioni G., Selloni A., Livraghi S.,Paganini M.C., Giamello E., N- doped TiO2: theory and experiment, Chem. Phys., 339 (2007) 44–56.
  • [14] Sakthivel S., Kisch H., Daylight photocatalysis by arbon-modifi ed titanium dioxide, Angew. Chem. Int. Ed.Engl., 42 (2003) 4908–4911.
  • [15] Benotti M .J., S tanford B .D., Wert E .C., S nyder S .A., Evaluation of a photocatalytic reactor membrane pilot system f or t he removal of pharmaceuticals and endocrine disrupting compounds from water, Water Research, 4 3 (2009) 1513 – 1522.
  • [16] China S.S., Lima T.M., Chiang K., Fane A.G., Hybrid low-pressure submerged membrane photoreactor for the removal of bisphenol A, Desalination, 202 (2007) 253–261.
  • [17] Mozia S., Tomaszewska M., Morawski A.W., A new photocatalytic membrane reactor (PMR) f or removal o f a zo-dye Acid Red 1 8 from water, Applied Catalysis B: Environmental, 59 (2005) 131–137.
  • [18] Matsunaga T., Tomoda R., Nakajima T., Wake H., Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29 (1985) 211–214.
  • [19] Tran T.H., Nosaka A.Y., Nosaka Y., Adsorption and Photocatalytic Decomposition o f Amino Acids in TiO2 Photocatalytic Systems, J. Phys. Chem. B, 110 (2006) 25525–25531.
  • [20] Yang X., Wang Y., Photocatalytic effect on plasmid DNA damage under different UV irradiation time, Build. Environ., 43 (2008) 253–257.
  • [21] Magnuson K., Jackowski S., Rock C.O., Cronan Jr. J.E., Regulation of fatty acid biosynthesis in Escherichia coli, Microbiol. Mol. Biol. Rev., 57 (1993) 522–542.
  • [22] McLoughlin O .A., Ibanez P.F., Gernjak W ., Rodriguez S.M., Gill L.W., Photocatalytic disinfection of water u sing low cost compound parabolic collectors, Solar Energy, 77 (2004) 625–633.
  • [23] Méndez-Hermida F., Ares-Mazás E., McGuigan K.G., Boyle M., Sichel C., Fernández- -Ibánez P ., Disinfection o f drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2, J. Photochem. Photobiol. B, 88 (2007) 105–111.
  • [24] Shephard, G.S., Stockenstrom, S., de Villiers, D., Engelbrecht, W.J., Wessels, G.F.S., Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst, Water Research, 36 (2002) 140-146.
  • [25] Kiwi J ., Nadtochenko V., New Evidence f or TiO2 Photocatalysis during bilayer lipid peroxidation, J. Phys. Chem. B, 108 (2004) 17675– 17684.
  • [26] Maness P., Smolinski S., Blake D.M., Huang Z., Wolfrum E.J., Jacoby W.A., Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism, Appl. Environ. Microbiol., 65 (1999) 4094–4098.
  • [27] Mindong B., Zhitao Z., Mindi B., Bo Y., Xiyao B., Effects of Hydroxyl Radicals on Introduced Organisms of Ship’s Ballast Water Based Micro- Gap Discharge, Plasma Sci. Technol., 9(2007) 206–210.
  • [28] Tejero I., Gonzalez-Lafont A., Lluch J.M., Eriksson L.A., Theoretical modeling of hydroxyl- radical-induced lipid peroxidation reactions, J. Phys. Chem. B, 111 (2007) 5684–5693.
  • [29] Mills A., Le Hunte S., J., An overview of semiconductor photocatalysi, Photochem. Photobiol. A: Chem., 108 (1997) 1–35.
  • [30] French R.A., Jacobson A.R., Kim B., Isley S.L., Penn R .L., Baveye P.C., Influence of ionic strength, p H, and cation valence on aggregation kinetics of titanium dioxide nanoparticles, Environ. Sci. Technol., 43 (2009) 1354–1359.
  • [31] Yurdakal S., Loddo V., Ferrer B.B., Palmisano G., Augugliaro V., Farreras G.J., Optical properties of TiO2 suspensions: influence o f pH and powder concentration on mean particle size, Ind. Eng. Chem. R es., 4 6 (2007) 7 620– 7626.
  • [32] Cheng Y.W., Chan R.C.Y.,. Wong P.K, Disinfection of Legionella pneumophila by photocatalytic oxidation, Water Research, 4 1 (2007) 842–852.
  • [33] Lu Z.-X., Zhou L., Zhang Z.-L., Shi W.-L., Xie Z.-X., X ie H.-Y., C ell damage induced by photocatalysis of TiO2 thin films, Langmuir, 19 (2003) 8765–8768.
  • [34] Liochev S. I., Irwin F., Superoxide and iron: Partners i n c rime, I UBMB L ife, 4 8 ( 1999) 157–161.
  • [35] Carlioz A., Touati D., Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J., 5 (1986) 623–630.
  • [36] Dubrac S., Touati D., Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli, Microbiology, 148 (2002) 147–156.
  • [37] Herrmann J.-M., Heterogeneous photocatalysis: State of the art and present applications, Top. Catal., 34 (2005) 48–65.
  • [38] Gogate P.R., Pandit A.B., A review of imperative technologies for wastewater treatment II: hybrid methods, Adv. Environ. Res., 8 (2004) 501–551.
  • [39] Herrmann J.-M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53 (1999) 115–129.
  • [40] Kamble S.P., Sawant S.B., Pangarkar V.G., Batch and continuous photocatalytic degradation of benzenesulfonic acid using concentrated solar radiation, Ind. Eng. C hem. Res., 4 2 (2003) 6705–6713.
  • [41] Kaneco S., Rahman M.A., Amin M.N., Suzuki T., Ohta K ., Optimization of solar photocatalytic degradation conditions of bisphenol A in water u sing titanium dioxide, J. Photochem. Photobiol. A: Chem., 163 (2004) 419-424.
  • [42] Konstantinou I.K., Albanis T.A., TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations, Appl. Catal. B, 49 (2004) 1–14.
  • [43] Paz Y., Preferential photodegradation – why and how? C.R. Chimie, 9 (2006) 774–787.
  • [44] Gogniat G., Thyssen M., Denis, M., Pulgarin C., D ukan S .,. The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity, FEMSMicrobiol. Lett., 258 (2006) 18-24.
  • [45] Rincon A.G., Pulgarin C., Photocatalytical inactivation of E.coli: effect of (continuous- -intermittent) light intensity and of (suspended- fixed) TiO2 concentration, Appl. Catal. B: Environ., 44 (2003) 263-284.
  • [46] Stylidi M., Kondarides D.I., Verykios X.E., Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous T iO2 suspensions, Appl. Catal. B: Environ., 40 (2003) 271-286.
  • [47] Rincon A .G., Pulgarin C., Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water, Appl. Catal. B: Environ., 63 (2006) 222-231.
  • [48] Blanco J., Malato S., de las Nieves J., Fernandez P., Method of sedimentation of colloidal semiconductor particles, European patent application EP-1-101-737-A1, European Patent Office Bulletin 21(2001).
  • [49] Thiruvenkatachari R., Vigneswaran S., Moon I.S., A review o n U V/TiO2 photocatalytic oxidation process, Korean J. Chem. Eng., 25 (2008) 64–72.
  • [50] Chen D., Ray A.K., Photodegradation kinetics of 4-nitrophenol in TiO2 suspensions, Water Research, 32 (1998) 3223–3234.
  • [51] Mozia S., Tomaszewska M., Morawski A.W., Photocatalytic degradation of azo-dye A cid Red 18, Desalination, 185 (2005) 449–456.
  • [52] Chong M .N., L ei S ., J in B ., Saint C ., C how C.W.K., Optimisation of an annular photoreactor process for degradation of Congo red using a newly synthesized titania impregnated kaolinite nano-photocatalyst, Sep. Purif.Technol., 67 (2009) 355-363.
  • [53] Saquib M., Muneer M., TiO2-mediated photocatalytic degradation of a triphenylmethane dye ( gentian v iolet), in aqueous suspensions, Dyes Pigm., 56 (2003) 37-49.
  • [54] Parra S ., M alato S ., Pulgarin C ., New integrated photocatalyticebiological flow system using supported TiO2 and fixed bacteria for themineralization of isoproturon, Appl.Catal. B: Environ., 36 (2002) 131-144.
  • [55] Chin M.L., Mohamed A.R., Bhatia S., Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream, Chemosphere, 57 (2004) 547-554.
  • [56] Tang C ., Chen V., he photocatalytic degradation of reactive b lack 5 u sing T iO2/UV in an annular photoreactor, Water Research, 38 (2004) 2775-2781.
  • [57] Gelover S., Gomez L.A., Reyes K., Teresa Leal, M.,. A practical demonstration of water disinfection using TiO2 films and sunlight, Water Research, 40 (2006) 3274-3280.
  • [58] Fernandezs-Ibanez P., Sichel C., Polo-Lopez M.I., de Cara-Garcıa M., Tello J.C.,. Photocatalytic disinfection of natural well water contaminated by Fusarium solani using TiO2 slurry in solar CPC photo-reactors, Catal. Today, 144 (2009) 62-68.
  • [59] Choi W., Termin A., Hoffman M.R., The role of metal ion dopants in quantum-sized T iO2: correlation between photoreactivity and charge carrier recombination dynamics, J. P hys. Chem., 98 (1994) 13669-13679.
  • [60] Abdullah M., Low G.K.C., Matthews R.W., Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide, J. Phys. Chem., 94 (1990) 6820-6825.
  • [61] Habibi M.H., Hassanzadeh A., Mahdavi S., The effect of operational parameters on the photocatalytic degradation of three textile azodyes in aqueous T iO2 suspensions, J.Photochem. Photobiol. A: Chem., 172 (2005) 89-96.
  • [62] Okonomoto K., Yamamoto Y., Tanaka H., Tanaka M., Itaya A., Heterogeneous photocatalytic decomposition of phenol over TiO2 powder, Bull. Chem. Soc. Jpn., 58 (1985) 2015-2022.
  • [63] Burns R., Crittenden J.C., Hand D.W., Sutter L.L., Salman S .R., Effect of inorganic ions in heterogeneous photocatalysis, J. Environ. Eng., 125 (1999) 77-85.
  • [64] Rizzo, L. Koch J., Belgiorno V., Anderson M.A., Removal of methylene blue in a photocatalytic reactor using polymethylmethacrylate supported TiO2 nanofilm, Desalination, 211 (2007) 1-9.
  • [65] Matthews R.W., McEnvoy S.R., Photocatalytic degradation of phenol in the presence of near- UV illuminated titanium dioxide, J. Photochem. Photobiol. A: Chem., 64 (1992) 231.
  • [66] Kabra K., Chaudhary R., Sawhney R.L., Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review, Ind. Eng. Chem. Res., 43, (2004) 7683-7696.
  • [67] Bahnemann D., Photocatalytic water treatment: solar energy applications, Sol. Energy, 77 (2004) 445-459.
  • [68] Gaya U.I., Abdullah A.H., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J.Photochem. Photobiol. C: Photochem. Rev., 9 (2008) 1-12.
  • [69] Alfano O.M., Bahnemann D., Cassano A.E., Dillert R ., Goslich R ., Photocatalysis in water environments using artificial and solar light, Catal. Today, 58 (2000) 199–230.
  • [70] Bhatkhnade D.S., Kamble S.P., Sawant S.B., Pangarkar V.G., Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light, C hem. Eng. J., 102 (2004) 283-290.
  • [71] Ochuma I.J., Fishwick R.P., Wood J., Winterbottom J.M., Optimisation of degradation conditions of 1,8-diazabicyclo[5.4.0]undec-7-ene in water and reaction kinetics analysis using a concurrent downflow contactor photocatalytic reactor, Appl.Catal. B: Environ., 73 (2007) 259-268.
  • [72] Rehman S ., U llah R ., Butt A .M., G ohar N.D., Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170 (2009)560–569.
  • [73] Pirkanniemi K., Sillanpää M., Heterogeneous water phase catalysis as an environmental application: A review, Chemosphere, 48 (2002)1047–1060.
  • [74] Ollis D.F., Pelizzetti E., Serpone N., Photocatalyzed destruction of water contaminants, Environ. Sci. Technol., 25 (1991) 1522–1529.
  • [75] Doll T.E., Frimmel F.H., Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues-evaluation of the long term stability of t he photocatalytic activity of TiO2, Water Research, 39 (2005) 847–854.
  • [76] Shang C., Cheung L.M., Ho C.M., Zeng M., Repression of photoreactivation and dark repair of coliform bacteria by TiO2-modified UV-C disinfection, Appl. Catal. B: Environ., 89(2009) 536-542.
  • [77] Sichel C., Tello J., de Cara M., Fernandez-Ibanez P., Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi, Catal. Today, 129 (2007) 152-160.
  • [78] Minero C ., Kinetic analysis o f photoinduced reactions at the water semiconductor interface, Catal. Today, 54 (1999) 205-216.
  • [79] Cunningham J., Sedlak P., Kinetic studies of depollution process in TiO2 slurries: interdependences of adsorption and UV-intensity, Catal. Today, 29 (1996) 209-315.
  • [80] Hong S.-S., Lee M.S., Hwang H.-S., Lim K.-T., Park S.S., Ju Ch.-S., Lee G.-D., Preparation of titanium dioxides in the W/C microemulsions and their photocatalytic activity, Sol.Energy Mater. Sol. Cells, 80 (2003) 273–282.
  • [81] Valente J.P.S., Padilha P.M., Florentino A.O., Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2, Chemosphere, 64 (2006) 1128–1133.
  • [82] Minero C., Pelizetti E., Malato S., Blanco J., Large solar plant photocatalytic water decontamination: effect of operational parameters, Sol. Energy, 56 (1996) 421-428.
  • [83] Watts R.J., Kong S., Orr M.P., Miller G.C., Henry B.E., Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent, Water Research, 29 (1995) 95–100.
  • [84] Cho M ., C hung H ., C hoi W., Yoon J., L inear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Research, 38 (2004) 1069-1077.
  • [85] Cho M., Yoon J., Measurement of OH radical CT for inactivating Cryptosporidium parvum using photo/ferrioxalate and photo/TiO2 systems, J. Appl. Microbiol., 104 (2008) 759-766.
  • [86] Hom L.W., Kinetics of chlorine disinfection in an ecosystem, J. Sanit. Eng. Div., 98 (1972) 183-194.
  • [87] Chan A.H.C., Chan C.K., Barford J.P., Porter J.F., Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater, Water Research, 37 (2003) 1125- 1135.
  • [88] Pareek V., Chong S., Tade M., Adesina A.A., Light intensity distribution in heterogeneous photocatalytic reactors, Asia-Pacific J. Chem. Eng., 3 (2008) 171-201.
  • [89] Cassano A .E., A lfano O.M., Reaction engineering of suspended solid heterogeneous photocatalytic reactors, Catal. Today, 58 (2000) 167-197.
  • [90] Grzechulska-Damszel J., Orecki A., Mozia S., Tomaszewska M., Morawski A.W., Możliwości i perspektywy oczyszczania wody i ścieków w układzie fotokataliza/procesy membranowe, Przemysł Chemiczny, 85 (2006) 1011-1015.
  • [91] Fu J., Ji M., Wang Z., Jin L., An D., A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst, J. Hazard. Mater., 131 (2006) 238-242.
  • [92] Molinari R., Grande C., Drioli E., Palmisano L., Schiavello M., Photocatalytic membrane reactors for degradation of organic pollutants in water, Catal. Today, 67 (2001) 273-279.
  • [93] Molinari R., Palmisano L., Drioli E., Schiavello M., Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification, J. Memb. Sci., 206 (2002) 399-415.
  • [94] Bosc F., Ayral A., Guizard C., Mesoporous anatase coatings for coupling membrane separation and photocatalyzed reactions, J. Memb. Sci., 265 (2005) 13-19.
  • [95] Zhang H., Quan X., Chen S., Zhao H., Zhao Y., Fabrication of photocatalytic membrane and evaluation itsefficiency in removal of organic pollutants from water, Sep.Purif. Technol., 50 (2006) 147-155.
  • [96] Zhang H., Quan X., Chen S., Zhao H., Zhao Y., The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability, Appl. Surf. Sci., 252 (2006) 8598-8604.
  • [97] Choi H., Stathatos E., Dionysiou D.D., Sol-gel preparation of mesoporous photocatalytic TiO2 f ilms a nd T iO2/Al2O3 composite membranes for environmental applications, Appl. Catal. B: Environ., 63 (2005) 60-67.
  • [98] Choi H., Stathatos E., Dionysiou D.D., Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems, Desalination, 202 (2007) 199-206.
  • [99] Kim S.H., Kwak S.Y., Sohn B.H., Park T.H., Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-filmcomposite (TFC) membrane as an approach to solve biofouling problem, J. Memb. Sci., 211 (2003) 157-165.
  • [100] Bellobono I.R., Morazzoni F., Bianchi R., Mangone E.S., Stanescu R., Costache C., Tozzi, P.M., Solar energy driven photocatalytic membrane modules for water reuse in agricultural and food industries. Pre-industrial experience using s-triazines as model molecules, Int. J. Photoenergy, 7 (2005) 87-94.
  • [101] Bellobono I.R., Morazzoni F., Tozzi P.M., Photocatalytic membrane modules for drinking water purification in domestic and community appliances, Int. J. Photoenergy, 7 (2005) 109-113.
  • [102] Artale M.A., Augugliaro V., Drioli E., Golemme G., Grande C., Loddo V., Molinari R., Palmisano L., Schiavello M., Preparation and characterization of membranes with entrapped TiO2 and preliminary photocatalytic tests, Ann.Chim., 91 (2001) 127-136.
  • [103] Kleine J., Peinemann K .V., S chuster C ., Warnecke H.J., Multifunctional system for treatment of wastewaters from adhesive-producing industries: separation of solids and oxidation of dissolved pollutants using doted microfiltration membranes, Chem. Eng. Sci., 57 (2002) 1661-1664.
  • [104] Molinari R., Pirillo F., Falco M., Loddo V., Palmisano L., Photocatalytic degradation of dyes by using a membrane reactor, Chem. Eng. Proc., 43 (2004) 1103-1114.
  • [105] Kwak S.Y., Kim S.H., Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1.Preparation and characterization of TiO2 nanoparticle selfassembled aromatic polyamide thin-film-composite (TFC) membrane, Environ. Sci. Technol., 35 (2001) 2388-2394.
  • [106] Yang Y., Wang P., Preparation and characterizations of a new PS/TiO2 hybrid membrane by sol-gel process, Polymer, 47 (2006) 2 683- 2688.
  • [107] Ryu J., Choi W., Choo K.H., A pilot-scale photocatalyste membrane hybrid reactor: performance and characterization, Water Sci. Technol., 51 (2005) 491-497.
  • [108] Meng Y., Huang X., Yang Q., Qian Y., Kubota N., Fukunaga S ., Treatment o f polluted river water with a photocatalytic slurry reactor using low-pressure mercury l amps coupled with a membrane, Desalination, 181 (2005) 121-133.
  • [109] Rivero M.J., Parsons S.A., Jeffrey P., Pidou M., Jefferson B., Membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment, Water S ci. Technol., 53 (2006) 173-180.
  • [110] Jung J.T., Kim J.O., Choi W.Y., Performance of photocatalytic microfiltration with hollow fiber membrane, Mater. Sci. Forum, 544 (2007) 95-98.
  • [111] Chin S.S., Lim T.M., Chiang K., Fane A.G., Hybrid low-pressure submerged membrane photoreactor for the removal of bisphenol A, Desalination, 2002 (2007) 253-261.
  • [112] Huang X., Meng Y., Liang P., Qian Y., Operational conditions of a membrane filtration reactor coupled with photocatalytic oxidation, Sep. Purif. Technol., 55 (2007) 165-172.
  • [113] Tsarenko S.A., Kochkodan V.M., Samsoni-Todorov A.O., Goncharuk V.V., Removal of humic substances from aqueous solutions with a photocatalytic membrane reactor, Colloid J., 6 8 (2006) 341-344.
  • [114] Sun D., Meng T.T., Loong T.H., Hwa T.J., Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane, Water Sci. Technol., 49 (2004) 103-110.
  • [115] Augugliaro V., Garcia-Lopez E., Loddo V., Malato-Rodriguez S., Maldonado I., Marci G., Molinari R ., Palmisano L ., Degradation of linomycin in aqueous medium: coupling of solar photocatalysis and membrane separation, Sol. Energy, 79 (2005) 402-408.
  • [116] Chin S.S., Chiang K., Fane A.G., The stability of polymeric membranes in TiO2 photocatalysis process, J. Memb. Sci., 275 (2006) 202-211.
  • [117] Rajca M., Bodzek M., Z integrowany u kład fotokataliza- ultrafiltracja w usuwaniu kwasów fulwowych z wody, w : “ Membrany i procesy membranowe w ochronie środowiska” (Bodzek M ., Pelczar J., E ds.), Monografie K komitetu Inżynierii Środowiska Polskiej Akademii Nauk, 66 (2010) 151-161.
  • [118] Rajca M., Bodzek M., Usuwanie naturalnych substancji organicznych z wody w układzie fotokataliza-ultrafiltracja, w: „Zaopatrzenie w wodę, jakość i ochrona w ód – z agadnienia współczesne” (Sozański M., Ed.), Poznań, 2010, tom I, str. 515-524.
  • [119] Rajca M., Bodzek M., Usuwanie kwasów fulwowych z wody metodami fotokatalicznymi wspomaganymi ultrafiltracją, Inżynieria i Ochrona Środowiska (2011), w druku.
  • [120] Sopajaree K., Qasim S.A., Basak S., Rajeshwar K., An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part I. Experiments and modeling of a batch-recirculated photoreactor, J. Appl. Electrochem., 29 (1999) 533-539.
  • [121] Sopajaree K., Qasim S.A., Basak S., Rajeshwar K., An integrated flow-reactor membrane filtration system for heterogeneous photocatalysis. Part II. Experiments on the ultrafiltration unit and combined operation, J. Appl. Electrochem., 29 (1999) 1111-1118.
  • [122] Mozia S ., Morawski A . W., Hybridization o f photocatalysis and membrane distillation for purification of wastewater, Catalysis Today, 118 (2006) 181-188.
  • [123] Mozia S., Toyoda M., Tsumura T., Inagaki M., Morawski A .W., Comparison of e ffectiveness of methyIene blue decomposition using pristine and carbon-coated TiO2 in a photocatalytic membrane reactor, Desalination, 212 (2007) 141-151.
  • [124] Mozia S., Morawski A. W., Integration of photocatalysis with ultrafiltration or membrane distillation for removal of azo dye Direct Green 99 from water, Journal of Advanced Oxidation Technologies, 12 (2009) 111-121.
  • [125] Azrague K., Aimar P., Benoit-Marquie F., Maurette M.T., A new combination of a membrane and photocatalytic reactor for the depollution of turbid water, Appl. Catal. B: Environ., 72 (2006) 197-205.
  • [126] Camera-Roda G., Santarelli F., Intensification of water d etoxification by integrating phootocatalysis and pervaporation, J . Sol. Energy Eng., 129 (2007) 68-73.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC2-0002-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.