PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fixed grid numerical modeling of solid-liquid phase change problems

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to fundamental scientific interest as well as broad range applications in environment and technology numerous numerical techniques for solution of solid-liquid phase change problems have been elaborated. The essential computational difficulty and challenge is the way in which the latent heat evolution is accounted for. The differences in treating of the latent heat evolution are also commonly used for classification of numerical methods. The paper is concerned with description and analyzing numerical methods for solid-liquid phase change problems using uniform Cartesian grids. Typically they are broadly separated into two groups as either interface tracking or interface capturing method. The paper is an attempt also to discuss some ideas of implementation of hybrid techniques. These have appeared already in the newest trends in the development of prediction methods for the direct numerical simulation of multiphase phenomena based on one-domain (one-fluid) formalism coupled with efficient tracking algorithms.
Rocznik
Tom
Strony
75--98
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45C, 15-351 Bialystok, jogoscik@pb.edu.pl
Bibliografia
  • [1] Alexiades V., Solomon A. D.: Mathematical modeling of melting and freezing processes. Hemisphere Publishing Corporation, Washington 1993.
  • [2] Caginalp G.: An analysis of a phase field model of a free boundary. Archive for Rational Mechanics and Analysis 1986, 92, 3, 205-245.
  • [3] Ferziger J. L., Peric M.: Computational Methods for Fluid Dynamics. Third rev. edition, Springer-Verlag, Berlin Heidelberg, New York 2002.
  • [4] Ganesan S., Poirier D. R.: Conservation of mass and momentum for the flow of interdendritic liquid during solidification. Metallurgical Transactions B 1990, 21B, l, 173-181.
  • [5] Hirt C. W., Nichols B. D.: Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Comp. Physics 1981, 39, 201-225.
  • [6] Juric D.: Computations of phase change, PhD Thesis. Mechanical Engineering, University of Michigan 1996.
  • [7] Juric D., Trygvasson G. C.: Computations of boiling flows. International Journal of Multiphase Flow 1998, 24, 3, 387-410.
  • [8] Kothe D. B.: Perspective on Eulerian Finite Volume Methods for Incompressible Interfacial Flows. LANL Report LA-UR-97-3559, Los Alamos 1997.
  • [9] Li Z.: The immersed interface method - A numerical approach for partial differential equations with interfaces, PhD Thesis. University of Washington 1994.
  • [10] Li C-Y., Garimella S. V., Simpson J. E.: Fixed-grid front-tracking algorithm for solidification problems, Part I: Method and validation. Numerical Heat Transfer 2003, Part B, 43, l, 117-141.
  • [11] Labonia G., Timchenko V., Simpson J. S., Garimella V., Leonardi E., de Vahl Davis G.: Reconstruction and advection of a moving interface in three dimensions on a fixed grid. Numerical Heat Transfer 1998, Part B, 34, l, 121-138.
  • [12]Liu X-D., Fedkiw R. P., Kang M.: A boundary condition capturing method for Poisson's equation on irregular domains. Journal of Comp. Physics 2000, 160, l, 151-178.
  • [13]Mittal R., Iaccarino G.: Immersed boundary methods. Annual Reviews Fluid Mechanics 2005, 37,239-261.
  • [14] Ni J., Beckermann C.: A volume-averaged two-phase model for transport phenomena during solidification. Metallurgical Transactions B, 1991, 22B, 3, 349-361.
  • [15] Osher S., Sethian J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Comp. Physics 1988, 79, l, 12-49.
  • [16] Patankar S.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York 1980.
  • [17] Peskin C. S.: Numerical analysis of blood flow in the heart. Journal of Comp. Physics 1977, 25,1,220-252.
  • [18] Peskin C. S.: The immersed boundary method. Cambridge University Press. Acta Numerica 2002, 479-517.
  • [19] Scardovelli R., Zaleski S.: Direct numerical simulation of free-surface and interfacial flow. Ann. Rev. Fluid Mech. 1999, 31, 567-603.
  • [20] Shamsundar K. Sparrow E. M.: Effect of density change on multidimensional conduction phase change. J. of Heat Transfer 1976, 98, 4, 550-557.
  • [21] Shin S., Juric D.: Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. Journal of Comp. Physics 2002, 180, 2, 427-470.
  • [22] Shyy W., Udaykumar U. S., Rao M. M., Smith R. W.: Computational Fluid Dynamics with Moving Boundaries. Taylor & Francis, London 1996.
  • [23] Slattery J. C.: Advanced Transport Phenomena. Cambridge University Press, Cambridge 1999.
  • [24] Trygvasson G., Bunner B., Esmaeeli A., Juric D., Al-Rawahi N., Tauber W., Hań J., Nas S., Y.J.: A front-tracking method for the computations of multiphase flow. Journal of Comp. Physics 2001, 169, 2, 708-759.
  • [25] Udaykumar H. S., Marella S., Krishnan S.: Sharp-interface simulation of dendritic growth with convection: benchmarks. Int. J. Heat Mass Transfer 2003, 46, 14, 2615-2627.
  • [26] Udaykumar H. S., Mittal R., Shyy W.: Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids. Journal of Comp. Physics 1999, 153, 2, 535-574.
  • [27] Udaykumar H. S., Shyy W., Rao M. M.: ELAFINT: A mixed Eulerian-Lagrangian method for fluid flow with complex and moving boundaries. AIAA Paper 94-1996, 1994.
  • [28]Voller V. R.: An overview of numerical methods for solving phase change problems. Ed. W.J. Minkowycz and E.M. Sparrow, Advances in Numerical Heat Transfer, Vol. l, Chapt. 9. Taylor & Francis, Washington DC 1997, 341-380.
  • [29] Yoller V. R., Swaminathan C. R., Thomas B.G.: Fixed grid techniques for phase change problems: A review. Int. J. Numer. Methods Eng. 1990, 30, 45 875-898.
  • [30]Yang Y., Udaykumar H. S.: Sharp interface Cartesian grid method III: Solidification of pure materials and binary solutions. Journal of Comp. Physics 2005, 210, l, 55-74.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC1-0001-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.