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Abstract: This paper considers the doubly periodic problem of elasticity for anisotropic solids containing regular sets of thin branched in-
clusions. A coupling principle for continua of different dimension is utilized for modeling of thin inhomogeneities and the boundary element 
technique is adopted for numerical solution of the problem. The branches of the inclusion can interact both inside the representative vol-
ume element and at the interface of neighbor representative elements. A particular example of the elastic medium reinforced by a doubly 
periodic set of I-beams is considered. Stress intensity and stress concentration inside and outside thin inclusions are determined. The de-
pendence of the effective mechanical properties of the reinforced composite material on the volume fraction of the filament and its rigidity 
is obtained. 
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1. INTRODUCTION 

One of the important tasks of mechanics of inhomogeneous 
solids, in particular the theory of thin inclusions (Sulym, 2007), 
is the study of stress concentration at the reinforcements in the 
concrete and composite materials. The corresponding reinforce-
ments are commonly produced using the standard shapes  
(a T-beam, an I-beam, a channel, and angle etc.), which have the 
shape of non-smooth thin branched inclusions. The solution 
of elasticity problems for solids containing doubly or triply periodic 
sets of thin inhomogeneities also allows estimating the effective 
mechanical properties of the corresponding composite materials. 
Moreover, it is possible to consider both cases of interaction 
of reinforcements: inside a representative volume element, and on 
its boundary. The latter allows modeling of novel continuously 
reinforced composite materials, which strength and rigidity should 
be very high due to their solidity and the absence of high stress 
concentration. 

The analysis of elastic crooked or cross-like inclusions was 
mainly performed for the aperiodic problems of elasticity. In par-
ticular, the papers (Osiv and Sulym, 2001; 2002) considered the 
antiplane deformation of solids containing a set of arbitrarily ori-
ented rectilinear joined ribbon-like elastic inclusions. Šackyj and 
Kundrat (2004) provided the analysis of the out-of-plane defor-
mation of an isotropic medium containing a set of joined rigid line 
inclusions, in particular, those with the shape of and angle,  
a T-beam, an I-beam etc. The plane problem of elasticity was 
considered for an infinite medium containing a cross-like rigid line 
inclusion (Antipov et al., 1987; Popov, 1993) and a flexible cross-
like elastic inclusion (Grigoryan et al., 2002). Pasternak and 
Sulym (2011) were the fist to propose the general boundary ele-
ment approach for the solution of plane problems of elasticity for 
isotropic and anisotropic solids containing systems of joined multi-
branched thin elastic inclusions. 

The study of doubly periodic sets of thin inhomogeneities was 
held in Refs. (Kosmodamianskij, 1976; Dolgikh and Fil’shtinskii, 
1979; Pasternak, 2012; Pasternak and Sulym 2013). However, 
to the best of authors’ knowledge the doubly periodic problems for 
thin branched inclusions were not referenced in the scientific 
literature. Therefore, this paper considers the general approach 
for studying the doubly periodic problems for anisotropic elastic 
solids containing thin branched inclusions. This approach is based 
on the coupling principle for continua of different dimension and 
the boundary element method. 

2. PROBLEM FORMULATION BASED ON THE COUPLING 
PRINCIPLE 

Consider an infinite anisotropic elastic medium containing 
a doubly periodic set of thin elastic branched inclusions identical 
to each other, such that translation symmetry conditions are satis-
fied both for geometrical and physical properties of the solid. For 
modeling of the corresponding composite material the coupling 
principle for continua of different dimension (Sulym, 2007) is used. 
Thus, the inclusion is replaced with the line    of field discontinui-

ties. One can assume that the line    coincides with a median line 
of the thin inhomogeneity. Thus, using this technique the problem 
is split into two sub-problems: an external one, which considers 
the stress-strain state of a solid and its effective mechanical prop-
erties due to a set of discontinuity lines, and an internal one, 
which is focused on the modeling of relations between displace-
ments and tractions at the opposite sides of the thin inhomogenei-
ty, and thus, at the opposite faces of the discontinuity line   . 

According to Pasternak (2012), the external problem is re-
duced to the following system of dual integral equations: 
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where    and    are displacement and traction vectors at the 
base contour       in the selected representative volume ele-
ment;  ( )  ( )  ( ) , ∑( )  ( )  ( ) ; signs “+” and “–

” denote variables concerned with faces   
  and   

  of the math-
ematical cut   ; symbols RPV stands for the Riemann Principal 
Value, CPV for the Cauchy Principal Value and HPV for the 
Hadamard Principal Value (finite part) of an integral. The functions 

  ( ) and   
 ( ) define the external load set by the compo-

nents 〈   〉 of the average stress tensor and are given by special 

integral identities (Pasternak, 2012). Closed-form expressions for 

the kernels     [          
  

   
  

] are given in Ref. (Pas-

ternak, 2012). These kernels are functions of coordinates of collo-

cation point   and integration point  , and also depend on the 

vectors  ( ) and  ( ) of the fundamental periods, which form the 
lattice (Fig. 1). 

 
Fig. 1. The sketch of the problem 

Pasternak and Sulym (2011), Pasternak (2011) provide the 
closed-form relations for the mathematical models of thin non-
branched elastic and piezoelectric, isotropic and anisotropic inclu-
sions, which can be generally presented with the following func-
tional dependences: 

   0 1 0 1, , , , , ,u M M   u y F y t u P P

   0 1 0 1, , , , , ,t M M   t y F y t u P P  
(2) 

Here   ,   ,    and    are the resultant force and moment 
applied at the left and right ends of a thin inclusion, respectively. 
The inclusion model given by Eq. (2) is used as a basic one 
for description of the edges of the branched inhomogeneities. 

According to Pasternak and Sulym (2011), to study a thin 
branched inclusion the latter is described by the undirected graph 
 ( ), which edges         (     ),         correspond 

to the non-branched links of the inclusion. It is assumed that the 

graph  ( ) contains no loops (    (     )   ) and no iso-
lated vertices. Nevertheless, the absence of loops does not mean 
that one cannot model the stress state of solids with closed thin 
inclusions. The later can be described with a closed graph, which 
contain at least two vertices. Those vertices, which join two 
or more edges, are further called nodes, and the other are called 

the free ends of a branched inclusion. Each of the edges     can 

be modeled using various variants of the generalized inclusion 
model given by Eq. (2). 

While studying the doubly periodic problems one should con-
sider two possible cases of interaction of the edges of the 
branched inclusion: 1) inside the representative volume element, 
and 2) between the inhomogeneities at the interface of two neigh-
bor representative elements. 

To study the first case one can directly use the algorithm de-
veloped by Pasternak and Sulym (2011). In particular, if a thin 

branched inclusion consists of   edges joined with     nodes 
and the contact between inclusion’s edges is perfect, then at the 
each of   nodes the following balance equations should be satis-
fied: 
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where   is a number of edges of the inclusion, which are joined 

by the node;    and    are the force and the moment applied at 
the end of the  -th edge included by the vertex. Besides, the 
continuity conditions for displacements at the node can be satis-

fied by equating the average values of displacements   
 

 
∑   

and rotation angles   of the edges united by the node: 

1 2 ... q  u u u ,  1 2 ... q     . (4) 

The rotation angles (the slope) of the inclusion’s lines can be 
determined, for example, using the Euler–Bernoulli beam equa-
tion. 

Equations (1), (2) together with relations (3), (4), which pro-

duce    additional equations for determination of    unknown 

components of contact force ;    vectors and moments    at the 
nodes of the branched inclusion, can be used for studying doubly 
periodic problems for inhomogeneous solids, which representative 
volume elements contain internal thin inclusions. 

 

Fig. 2. Doubly periodic set of the thin inclusions joined the interface  
           of neighbor representative volume elements 

As for the case of thin branched inclusions, which are joined 
at the interface of neighbor representative volume elements, 
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the displacement continuity conditions (4) are more complicated. 
For example, consider honeycomb with hexagonal cells filled with 
honey (Fig. 2). The walls of the cells can be considered as thin 
inclusions and the honey represents the elastic medium. 
The geometry of this doubly periodic problem thus can be set by 

means of three rectilinear branches of inclusion of the length   

each, which repeats with the fundamental periods  ( )  

[√    ]
 

,  ( )  
 

 
[√     ]

 
. 

For the internal node 1 inside the representative volume ele-
ment (Fig. 2) relations (3), (4) can be used without any cautions. 
As for the node 2 formed by the ends 2–2'–2'' of the edges of the 
thin inclusion, the balance equations (3) for forces and moments 
are also satisfied. However, due to the quasi-periodicity of the 
displacements, the displacement continuity conditions for the 
joints at the interface of the neighbor representative elements 
should account for the cyclic constants. In particular, for the set of 
inclusions depicted in Fig. 2 the displacement continuity condi-
tions write as: 

2' 2 (1) u u u , 2' 2'' (2) u u u  

2 2'  , 2 2''   

(5) 

Here   ( ) and   ( ) are the cyclic constants of the displace-
ment vector along the corresponding fundamental periods. In case 
of a perfect contact between inclusions and the medium these 
constants can be determined through the external problem. Ac-
cording to Pasternak (2012), they are defined with the following 
integral identities: 
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The kernels   ( ) and   ( ) are regular. 
The obtained system of the boundary integral equations  

(1)–(6) is suitable for the solution by the modified boundary ele-
ment method (BEM) of Pasternak (2011). Besides, obtained 
equations allow determination of the effective mechanical proper-
ties of composite materials with the regular structure based on the 
BEM using the approach of Pasternak (2012). 

The BEM numerical implementation should account for the 
stress square root singularity at the free ends of a thin inclusion. 
This singularity can be accounted for by utilizing special shape 
functions (Pasternak, 2011) for modeling of displacement and 

stress discontinuities at the ends of the discontinuity line   , which 
replaces the inhomogeneity. Moreover, according to Pasternak 
(2011), the strength of the fields’ singularity at tips of a thin inho-
mogeneity is described by generalized stress intensity factors 
(SIF), which are determined through the discontinuity functions 
in the local rectangular coordinate system with the origin at the tip 
of an inhomogeneity by the following formulae: 
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where:  ( )  [       ]
 ,    [       ]

 , ∑   
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 ,     the generalized SIF. For a crack       , 

       ,          , where   ,    , are classical SIF 

of the cracks theory;   and   are real Barnett–Lothe tensors 
(Ting, 1996), which depend only on the material properties of the 
medium in the local coordinate system. 

The displacement vector and the stress function in the local 

coordinate system    
   

  with the origin   at the inclusion tip 

and    
  axis directed along a median line are related to the 

generalized SIF by the following asymptotic formulae (Pasternak, 
2011) 
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Here   and   are the Stroh matrices (Ting, 1996); 〈√  〉  

    [√  
      

   √  
      

 ];    and    are the eigenval-

ues of the Stroh eigenvalue problem (Ting, 1996);   is the stress 
function vector, which defines the components of the stress tensor 
at the arbitrary point by the following relations:  
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According to Sulym (2007), the order of stress singularity 
at the nodes of the branched inclusion is assumed to be weaker 
than a square root one (the same as and in the theory 
of branched cracks). Therefore, to model the ends of the edges 
joined in the node one can use quadratic discontinuous boundary 
elements. The same concerns nodes at the interface of the neigh-
bor representative volume elements. 

3. NUMERICAL ANALYSIS OF REGULAR SETS  
OF THIN BRANCHED INCLUSIONS 

Consider plane strain of the isotropic elastic medium 
(the Poisson ratio equals 0.3) containing a doubly periodic set 
of thin branched inclusions. The inhomogeneities form the rectan-

gular lattice with the fundamental periods  ( )  [   ]  

and  ( )  [    ] . Inclusions have the shape of the I-beam 
cross-section with the width of    and the height of    (Fig. 3). 

The thickness of inclusions’ edges equals    (       ). 
The medium is loaded at the infinity with the uniform bi-axial 

stress  . 
Fig. 4 depicts the plots of the normalized generalized SIF 

   
  

   

 √  
 at the tips of the branched I-beam inclusion and the 

components   
  

  

  
 of the force vector, and the bending mo-

ment    
 

(  ) 
 at the point   of the edge    of the inclusion 

depending on the relative rigidity   
  

 
 of the latter (  is the 

shear modulus). The density of the filament of the medium 
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is defined by the parameter   
  

 
. Continuous curves corre-

spond to the density of      , dashed ones       , 

and dash-dot       . For       the difference between the 
values of SIF from those obtained for the aperiodic problem 
for a single I-beam inclusion (Pasternak and Sulym, 2011) does 
not exceed 0.5 % that justifies the reliability of the developed 
algorithm and verifies the obtained results. 

One can see in Fig. 4 that for soft (   ) inclusions their ap-

proaching essentially increases mode I SIF     (the normal open-

ing mode). Instead of that, mode II SIF     does not show such 
obvious dependence: with the increase in the parameter   SIF 

     first decreases, and then starts to increase. 

For rigid (   ) elastic inclusions the generalized mode  
I SIF     increases with the growth of  . Approaching of the 

inclusions also causes the growth of the longitudinal force    
in the flanges of the I-beam. Instead of that, limiting values of the 
mode II generalized SIF     decrease. Besides, at approaching 

of the inclusions the bending moment   and the shear force    

at the node   of the flange    also decrease. These values are 
determinative for the assessment of the strength of the thin inho-
mogeneity. Thus, approaching of inclusions allows to reduce 
stresses both outside and inside the inclusion. 

 

Fig. 3. The elastic medium reinforced  
           with a doubly periodic set of I-beams 

 

 

Fig. 4. Stress intensity at the tips of inclusion and the force and bending moment inside it 

 

Fig. 5. Effective moduli of the medium reinforced with the I-beams 
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Besides stress intensity, developed numeric-analytic approach 
allows determining of the effective mechanical properties of the 
medium reinforced by the doubly periodic set of I-beams. 
For example, Fig. 5 depicts the effective moduli 〈  〉 and 〈  〉, 
and the effective shear modulus 〈 〉 for three selected values 

of the filament density   depending on the relative rigidity   
of inclusions. 

One can see in Fig. 5 that the reinforced medium is essentially 
anisotropic. To increase the effective moduli one should reinforce 
the medium with essentially rigid fibers. It should be noted that the 

effective moduli 〈  〉 and 〈 〉 increase with the growth of   in two 
stages, which is well observed in Fig. 5. Such step-like character 
of the plot can be related with the influence of bending of the 
flanges of I-beam. Comparing Fig. 4 and Fig. 5 one can see that 
the second stage of growth of elastic moduli is related with the 
increase in the bending moment at the flange. 

The most essential increase in the effective modulus is ob-
served for a composite along the vertical axis of the rigid rein-

forcement I-beam. Moreover, for       it is possible to increase 
this modulus up to six times comparing to the unreinforced medi-
um. Taking into account that according to Fig. 4 the generalized 

SIF    , shearing force and the bending moment at the flange 
decrease, such reinforcing can be considered as a favorable one. 

4. CONCLUSIONS 

The proposed approach for studying of doubly periodic sets 
of thin branched inclusions allows not only to determine stress 
concentration and intensity in composites with regular reinforce-
ment, but also to assess the effective mechanical properties 
of such materials. Thus, the developed technique can be used as 
a tool for designing and optimization of the composite materials 
reinforced with thin filament, in particular, with a standard shapes. 
The considered example for a medium reinforced with the  
I-beams justified the efficiency of the proposed approach and 
allowed determining effective moduli of such composite. In par-
ticular, it is observed that approaching of such thin rigid rein-
forcements allows both to increase effective moduli and to de-
crease internal stress concentration and intensity. 
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