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Abstract: The positive and minimal realization problem for continuous-discrete linear single-input and single-outputs (SISO) systems
is formulated. Two special case of the continuous-discrete systems are given. Method based on the state variable diagram for finding
a positive and minimal realization of a given proper transfer function is proposed. Sufficient conditions for the existence of a positive mini-
mal realization of a given proper transfer function of all-pole and all-zero systems are established. Two procedures for computation
of a positive minimal realization are proposed and illustrated by a numerical examples.
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1. INTRODUCTION

In positive systems inputs, state variables and outputs take
only non-negative values. Examples of positive systems are in-
dustrial processes involving chemical reactors, heat exchangers
and distillation columns, storage systems, compartmental sys-
tems, water and atmospheric pollution models. A variety of mod-
els having positive linear systems behavior can be found in engi-
neering, management science, economics, social sciences, biolo-
gy and medicine, etc. Positive linear systems are defined
on cones and not on linear spaces. Therefore, the theory of posi-
tive systems is more complicated and less advanced. An overview
of state of art in positive systems theory is given in the mono-
graphs: Farina and Rinaldi (2000), Kaczorek (2002). The realiza-
tion problem for positive discrete-time and continuous-time
systems without and with delays was considered in Kaczorek
and Bustowicz (2004), Kaczorek (2004, 2005, 2006a, 2006b).

Continuous-discrete 2D linear system is a dynamic system
that incorporates both continuous-time and discrete-time dynam-
ics. It means that state vector of 2D system contain continuous-
time state variables and discrete-time state variables, input and
output vectors depends on continuous time t and discrete steps i.
Examples of continuous-discrete systems include systems with
relays, switches, and hysteresis, transmissions, and other motion
controllers, constrained robotic systems, automated highway
systems, flight control and management systems, analog/digital
circuit. The positive continuous-discrete 2D linear systems have
been introduced in Kaczorek (2002), positive hybrid linear sys-
tems in Kaczorek (2007) and the positive fractional 2D hybrid
systems in Kaczorek (2008a). Different methods of solvability
of 2D hybrid linear systems have been discussed in Kaczorek
et al. (2008) and the solution to singular 2D hybrids linear systems
has been derived in Sajewski (2009). The realization problem
for positive 2D hybrid systems have been addressed in Kaczorek
(2002, 2008b), Sajewski and Kaczorek (2009, 2010)
and the minimal realization problem for all-pole (the transfer func-
tion with only poles) and all-zero (the transfer function with all zero
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poles) 2D systems has been addressed in Antoniou (2002)
and Varoufakis et al. (1987).

The main purpose of this paper is to present a method
for computation of a positive and minimal realization of a given
proper transfer function of all-pole and all-zero continuous-
discrete linear system. Proposed method is based on the state
variable diagram method. Sufficient conditions for the existence
of a positive minimal realization of a given proper transfer function
of all-pole and all-zero system will be established and a proce-
dures for computation of a positive minimal realization for two
cases of transfer functions will be proposed. The paper is orga-
nized as follows. In section 2 some preliminaries concerning
the positive continuous-discrete 2D linear systems and minimal
realization are recalled and the positive minimal realization
is formulated. Two special cases of continuous-discrete systems
are recalled in section 3. In the same section the solution to the
positive minimal realization problem for two cases of transfer
function are presented and the sufficient conditions for existence
of positive minimal realization are derived. Concluding remarks
are given in section 4.

To the best author knowledge the positive minimal realization
problem for continuous-discrete 2D linear systems have not been
considered yet.

In the paper the following notation will be used. The set of
n X m real matrices will be denoted by R™*™ and R™ = R"™*1,
The set of n x m real matrices with nonnegative entries will
be denoted by RP*™ and RT = R¥1. M, be the set
of n x m Metzler matrices (real matrices with nonnegative off-
diagonal entries). The n x n identity matrix will be denoted by I,,
and the transpose will be denoted by T.

2. PRELIMINARIES AND PROBLEM FORMULATION

Consider a continuous-discrete linear system described by the
equations (Kaczorek, 2002):

Kq (t,1) =A% (t,1) + AipXo (t,1) + Byu(t, i) (1a)



te R, =[0,+x]

Xz(t,i +l) =A21X1(t,i) + A22X2 (t,l) + Bzu(t,i)
ieZ,

Y(t, i) =Cyx (i) + CoXo (t,i) + Du(t, i) (10)

Lo 0% (6 . .
where: x,(t,i) = x;(: 2} x.(t,0) € R™, x,(t,i) € R"2,

u(t,i) €R™, y(t,i) €ERP and Ay € My, , Ajp € R™M772,

A21 € mnzxnll A22 € mnzxnzy Bl € mnlxm, BZ € mnzxm!

C, € RP*™M, C, € RP*™2 D € RP*™ are real matrices.
Boundary conditions for (1a) and (1b) have the form:

x,(0,i) =% (i), i € Z, and x,(t,0) = X, (t), t € R, )

(1b)

Note that the continuous-discrete linear system (1) has a simi-
lar structure as the Roesser model (Kaczorek, 2007; Roesser,
1975).

Defin)ition 2.1. The continuous-discrete linear system (1) is called
internally positive if x,(t,i) € R}, x,(t, i) € R}? and
y(t, i) € RY, te R,, i € Z, for all arbitrary boundary condi-
tions x, (i) € Ry, i € Z,, x,(t) € R}?, te R, and all inputs
u(t,i) eRT, te R, i €Z,.

Theorem 2.1. (Kaczorek, 2002; 2007) The continuous-discrete
linear system (1) is internally positive if and only if:

Aq€ Mnlv A, e ‘RTXHZ A€ ‘Rizxnl’ Ay € ‘Jﬂzxnz '
B, e R™™ B, eR™™ C,eR”™, C,eR"™, 3)
DeRP™M
The transfer matrix of the system (1) is given by the formula:
Ts2)=[c; Cz]{l WA A H%}
Ay 12-Ayn| |B,
+DeRPM(s,2)

(4)

where RP*™ (s, z) is the set of p X m real matrices in s and z
with real coefficient. Considering the m-inputs and p-outputs
continuous-discrete linear system (1), the proper transfer matrix
will be having the following form:

T11(s,2) Tim(s,2)
T(s,2) = : : : e RPM(s,2) (5a)
Tu(s,2) . Tpn(s,2)
where:
Ny My
ZZbi'f'jsizj
Ty (s,2) = Jkl ((Z ZZ)) = =0 =0
ki Sy ni% . (5b)
nklzmkl _ a ' J
i=0 j=0
I+ j#ng +my

For k=1,2,...,p; 1=1,2,..
Z{L[u(t, D1}, y(s,2)
and Laplace operators.

Multiplying the numerator and denominator of transfer matrix
(5b) by s™™ukiz7M2kl we obtain the transfer matrix in the state
space form eg. form which is needed to draw the state space

,m where U(s,z) =
= Z{L[y(t,i)]} and Z and L are the zet
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diagram (Kaczorek, 1992; Roesser, 1975; Sajewski and Ka-
czorek, 2010):

M N2k

> Sl

Ty (5-1' 2—1) _ i=0 j=0

Ny N2k

g My 2w _ ZZ S—iz—j

i=0 j=0
i+ j#N g +Np

fork=1,2,...,p;1=1,2,....,m

Definition 2.2. The matrices (3) are called the positive realization
of the transfer matrix T (s, z) if they satisfy the equality (4). The
realization is minimal if the matrix A have lowest possible dimen-
sion among all realizations. For given transfer matrix there exist
many sets of matrices A, B C, D but for given matrices 4, B C,
D there exist only one transfer function.

The positive minimal realization problem can be stated as fol-
low.

Given a proper rational matrix T'(s, z) € RP*™(s, z), find its
positive and minimal realization (3).

Taking under considerations Definition 2.2 and e.g. similarity
transformation [8, 9] the solution to the realization problem given
in Section 3 is not unique.

Remark 2.1. For 1D systems the minimal realization is the one
with the matrix A of dimension n X n where n is the degree
of the characteristic polynomial of the system (Kaczorek, 1992).
This was implicated by controllability and observability of the 1D
system. For 2D system in general case this relationship is not true
(Sun-Yuan et al., 1977) and observability connected with control-
lability of the 2D system does not implicate the minimality of its
realization.

Remark 2.2. The minimal realization for 2D system is the one with
the matrix A of dimension (n, +n,) X (n; + n,) where n,
and n, are the degrees of the characteristic polynomial in s and z
of the system (Sun-Yuan et al., 1977).

3. PROBLEM SOLUTION FOR SISO SYSTEMS

The solution to the minimal positive realization problem will be
presented on two special cases of the 2D transfer functions
(m = p = 1). Proposed method will be based on state variable
diagram (Kaczorek, 2002; Sajewski and Kaczorek, 2010). Lets
consider the following two cases of the transfer functions of con-
tinuous-discrete linear system.

Case 1. The transfer function of all-pole system (which is the
transfer function with only poles):

T(sfl,zfl): - b :5
1 .
1—22a,]sz' (7)
i=0 j=0
i+j#0

where b is the real coefficient.
Case 2. The transfer function of all-zero system (which is the
transfer function with all zero poles):

non b Zj

Z z 1, JS Z

8
T(S_l,z_l) i=0j=0 _Y (8)
1 U
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3.1. Case1
Defining:
U
E =
1-ay 42 =8 4,8~ mags M2 ™ ©)

from (7) we obtain:

E=U+(a
Y =bE.

-1 -1 -y -n
nonaZ  F 8y qn S .88 "2 ?)E, (10)

Using (10) we may draw the state variable diagram shown
on Fig. 1.

Fig. 1. State variable diagram for transfer function (7) of all-pole system

As a state variable we choose the outputs of integrators
(x1,1 (€, D), Xq2(t,0), e, Xq 0, (£,0)) and of delay elements
(%2, (£, D), Xp2(t, D), v, Xo n, (£,1)). Using state variable dia-
gram (Fig. 1) we can write the following differential and difference
equations:

X1 (61) = X o (t,1),
X2 (81) = % 5(t,1),

Xg 1 (1) = Xg  (41),

Xy, (1) =€(t, 1),

Xp(ti+1) = Ao n,-1%11 (t, )+ alynz_lxlyz(t, i)+...
+ay 1n, 1%, (t1) + %y 5 (1) + aniynz_le(t, i),

X (ti+1) = ao,nz—le,l(t’i) + alynz,leyz(t,i) +...

+ay 1n,-2Xn, (1) + X 3(t 1) +a, o oe(t,i),

(11a)

Xz’nzil(t,i +1) = ao’levl(t, |) + alylxl’z(t, |) +...

+ay 11X (t,i)+ Xon, (t, i)+ anlyle(t, i),
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X2vn2 (t, i +1) = aOYOlel(t, i) + alYOlez(t, |) +...
+ay 0%, (1) +a, e(ti), (11b)

y(t,i) =be(t,i),

where:

E(t, i) = aoynleyl(t, |) + alynleyz(t,i) +...
+ 810, X1, (t,1) + %o (4,1) +u(t,i).
Substituting (11b) into (11a) we obtain:

Xg1(61) = X (t,1),

X2 (6,1) = X 5(t0),

(11c)

Xy (61) =X (1),
Xl,nl (t,i) = agn, X1 (t,1) + ayn, X2 (t,i+...
+8n, 10, X, (t,1) + Xp (t,1) +u(t, i),
X1 (Li+1) = go,nz—lxl,l(t: i)+ ayn,-1%1,2 (t,i)
+ay p, U 1)+t 8 g, X, ()
. . (12a)
+ anlvnz_lxzyl(t, 1)+ Xy, (1),
Xomg (L1 +1) = 81X 1 (6,0) + 51X o (t,0) +..
+ay 1%, (t,i)+ an 1X21 (t,0) + Xo ; (8,1) + anl’lu(t, i),
Xo,m (61 4+1) = &g o Xy (t,1) + 8y X 5 (8,1) +
+ay, 10X, (t,i)+ apy, 0X21 (t,i)+ anl,oU(t, i),
y(t,1) =bag, X1 (t,1) +bag X, (41) +...
+bay, 1, Xy (t1) + DX (8,1) +bu(t,i),

where:

ai'j = alyj +ai’n2an11j

(12b)

for i=01,...n, -1, j=04...n,—1

Defining state vectors in the form:

X11(t,1) X21(t,1)
, Xz(t,i)z (13)

Xa,n, (t.1)

X, (t,i) =
X1,n, (4,1)

we can write the equations (12) in the form:
[ % (t,1) }:|:A11 Alz}{xl(t:i)} {Bl}u(t i,
Xp(i+D) | [An Apn | X(ti)] |B;

v =[c; CZ]D;(&’ 'i))} +Du(t ),

(14)

where:

Al P ewmm (19)

aO,nz a1,r12 a2,n2 anlfl,nz



00 ...0
| e c RN
A2=lo o
10 ..0
a0,r12—1 : 5n1—1,n2—1
A21— : emnzxnl’
| 30 o Ay1p
@y, 1 0 .. O]
3yn,2 0 1 .. 0
Ap=| PoET emnm
anl,l 00 1
ano 0 0 0
0 an]_,nz—l

B, - : efRan:L, B, — an]_,l?272 Emnlel
0 :

1 an:|_,0
C1 =[bag n, bay, 1n,1€ R, 5
Co,=[b 0 .. 0]eR™2, D=[b]enL

Therefore, the following theorem has been proved.

Theorem 3.1. There exists a positive realization of dimension
(ny + ny) X (ng + ny,) if the system is all-pole and all coeffi-
cients of the nominator and denominator of the transfer function
(7) are nonnegative.

If the assumptions of Theorem 3.1 are satisfied then a positive
realization (3) of (7) can be found by the use of the following
procedure.

Procedure 3.1.

Step 1. Write the transfer function (7) in the form (10).

Step 2. Using (10) draw the state variable diagram shown
in Fig. 1.

Step 3. Choose the state variables and write equations (12).

Step 4. Using (12) find the desired realization (15) of transfer
function (7).

Example 3.1. Find a positive realization (3) of the all-pole contin-

uous-discrete system with proper transfer function:

2

TGstzh)= .
( ) 1-0521-04s1-03521 0252 -0.1572z
(16)

In this case n, = 2 and n, = 1.
Using Procedure 3.1 we obtain the following.
Step 1. Transfer function (16) can be written as:

E=U+(052"+045"+0.3521+0.25 +0.1s°z )E,

Y =2E.
(17)
Step 2. State variable diagram has the form shown on Fig. 2.
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i1

1
L] G
v Fy
g 0.4
T2
1
2 \ = Kl
f F Y
e
B

u

Fig. 2. State space diagram for transfer function (16)

Step 3. Using state variable diagram we can write the following
equations:

X1 (1) = X5 (t,1),

Xy 2 (8,1) = 0.2 4 (t,1) +0.4x 5 (t,1) + Xp 4 (t,0) +u(t, i),

Xp1(t,i+1) =0.2xy 4 (t,1) +0.5% » (t, 1) (18)
+0.5%, (t,1) +0.5u(t, i),

y(t,i) = 0.4x, 1 (8, 1) +0.8%; 5 (t,0) + 2%, (t,1) + 2u(t,i).

Step 4. The desired realization of (16) has the form:

[o 1 [o
ath 02 04 A=)

A,;=[0.2 05] A,,=[0.5],
Blzm, B, =[0.5], C,=[0.4 0.8],

C,=[2], D=[2].

Obtained realization have only nonnegative entries and its
of minimal dimension.

3.2. Case?2

Defining:

Y= (bnl,n2 + bnl,n2 _12_1 + bnl—l,n2 S_l (20)
+otbyes ™Mz "2)U

we may draw the state variable diagram shown in Fig. 3.

Similarly as in section 3.1 as a state variable we choose
the outputs of integrators (xy;(t,1), X1,(t, 1), ..., Xy 0, (t, )
and of delay elements (x, 1 (t, ), Xz2(t,1), ..., Xz, (¢, 0)).
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Fig. 3. State space diagram for transfer function (8) of all-zero system

Using state variable diagram (Fig. 3) we can write the follow-
ing differential and difference equations:

X2 (1) = %, (t,1),
X0 (t,1) = % 3(t,1),

X -1 (G1) =X (6,1),

Xq n, (1) = u(t,i),

Xon (t,141) =bg n, X (1) +by o, 1% o (L 1)+
+by 1 n, X, (G1) + X5 (61) + b, o, qu(ti),

Xo.o (t,T+1) =g o, 5% 1 (t,1) +Byp, 5% (6 1)+...

+bn1—1,nz—2xl,n1 t i+ x2’3(t,i)+bnlyn2_2u(t,i), (21)

X2,n2—1(t1 i+1) =bg X g (t,0) +y % o () +..
+0y 11X, (1) + %5 0, (t1) + by Ut i),

Xon, (t,i+1) =g Xy 1 (L, 1) +by oXg o (L, 1) +...
+by 0%, (61) +0y oU(L, ),

y(t,i) =bg X1 (4 1) +by o X o (8 1)+
+0y 3 n, Xan, (61 + X4 (8, 1) +by o, Ut ).

Defining state vectors in the form:

X4 (1) Xp1(t,1)
 X(ti) = : (22)
Xo,n, (t.1)

X (t,1) =
Xun, ()

we can write the equations (21) in the matrix form (14) where:

010 ..0
001 ..0
Ag=|i i s e AL =[0]eR™™,  (23)
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bO,nz—l bnl—l,nz—l
AZl: : e E Emnzxnl,
L boo - bna0
(01 0 0]
001 ..0
Ap=|i 1 1 T Henm
000 .. 1
000 (23)
0 By, 0,1
Bl: Emnlx:l, B ﬂ1yf:12—2 EngXl,
1 bnl,O
— Ixn,
Cl - [bO,n2 ' bnl—l,nz] eR J
C,=[l 0 .. 0]e®R™™, D=[b, , ]eR™

Therefore, the following theorem has been proved.

Theorem 3.2. There exists a positive realization of dimension

(ny + ny) X (ny + ny,) if the system is all-zero and all coeffi-

cients of the nominator of transfer function (8) are nonnegative.

If the assumptions of Theorem 3.2 are satisfied then a positive

realization (3) of (8) can be found by the use of the following

procedure.

Procedure 3.2.

Step 1. Write the transfer function (8) in the form (20).

Step 2. Using (20) draw the state variable diagram shown
in Fig. 3.

Step 3. Choose the state variables and write equations (21).

Step 4. Using (21) find the desired realization (23) of transfer
function (8).

Example 3.2. Find a positive realization (3) of the all-zero contin-

uous-discrete system with proper transfer function:

T(s,z) =65%2+5s% +4sz+3s+22 +1 (24)

Inthiscase n, = 2andn, = 1.
Using Procedure 3.2 we obtain the following.
Step 1. Transfer function (24) can by written as:

Y=(6+5z"t+4s 435z + 252 +s2z U (25)

Step 2. State variable diagram has the form shown in Fig. 4.

X341 1

H

A
F
h.b_

F

F Y

Fig. 4. State space diagram for transfer function (24)



Step 3. Using state variable diagram we can write the following
equations:

Xp1 (6 1) = x5 (L,1),
X0 (8, 1) = u(t,i),

Xo.1 (8,1 +1) = x4 (t,1) +3xg 5 (t,0) +5u(t,i), (26)
Y(t,0) = 2%y 1 (8, 1) + 48Xy 5 (t,0) + X, 1 (8, 1) + 6u(t,i).
Step 4. The desired realization of (17) has the form:
|01 |0
M=l o A=l
Ay =1 3], Ay =[0], 1)

0
Bl:L} B, =[5], C,=[2 4],

C, =[] D=[6]

Obtained realization have only nonnegative entries and its of
minimal dimension.

4. CONCLUDING REMARKS

A method for computation of a positive minimal realization
of a given proper transfer function of all-pole and all-zero continu-
ous-discrete linear systems has been proposed. Sufficient condi-
tions for the existence of a positive and minimal realization
of a given proper transfer function have been established. Two
procedures for computation of a positive minimal realizations
have been proposed. The effectiveness of the procedures have
been illustrated by a numerical examples. Extension of those
considerations for 2D continuous-discrete linear systems de-
scribed by second Fornasini-Marchesini model (Sajewski and
Kaczorek, 2010) is possible.

An open problem is formulation of the necessary and sufficient
conditions for the existence of solution of the positive and minimal
realization problem for 2D continuous-discrete linear systems
in the general form (Kurek, 1985).
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