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Abstract: New classes of singular fractional continuous-time and discrete-time linear systems are introduced. Electrical circuits are exam-
ple of singular fractional continuous-time systems. Using the Caputo definition of the fractional derivative, the Weierstrass regular pencil 
decomposition and Laplace transformation the solution to the state equation of singular fractional linear systems is derived. It is shown 
that every electrical circuit is a singular fractional systems if it contains at least one mesh consisting of branches with only ideal supercon-
densators and voltage sources or at least one  node with branches with supercoils. Using the Weierstrass regular pencil decomposition 
the solution to the state equation of singular fractional discrete-time linear systems is derived. The considerations are illustrated by numeri-
cal examples.  
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1. INTRODUCTION 

Singular (descriptor) linear systems have been addressed 
in many papers and books (Benvenuti and Farina, 2004; Dodog 
and Stosic, 2009; Dail, 1989; Kaczorek, 1992, 2004, 2008, 2010, 
2011; Podlubny, 1999). The eigenvalues and invariants assign-
ment by state and output feedbacks have been investigated 
in Benvenuti and Farina (2004), Dodog and Stosic (2009), Dail, 
(1989), Kaczorek (2004, 2008) and the realization problem 
for singular positive continuous-time systems with delays in Ka-
czorek (2010). The computation of Kronecker’s canonical form 
of a singular pencil has been analyzed in Podlubny (1999). 

Fractional positive continuous-time linear systems have been 
addressed in Kaczorek (2010) and positive linear systems 
with different fractional orders in Kaczorek (2007). An analysis 
of fractional linear electrical circuits has been presented 
in Gantmacher (1960) and some selected problems in theory 
of fractional linear systems in the monograph Kaczorek (2007).  

In this paper a new class of singular fractional linear systems 
and electrical circuits will be introduced and their solution of state 
equations will be derived. 

The paper is organized as follows. In section 2 the Caputo 
definition of the fractional derivative and the solution to the state 
equation of the fractional linear system are recalled. The solution 
of the state equation of singular fractional linear system is derived 
using the Weierstrass pencil decomposition and the Laplace 
transform in Section 3. Singular fractional linear electrical circuits 
are introduced in Section 4. In section 5 the fractional singular 
discrete-time linear systems are introduced and Weierstrass 
regular pencil decomposition is recalled. The solution of the state 
equation of singular fractional linear discrete-time system is de-
rived using the Weierstrass pencil decomposition in Section 6. 
Illustrating numerical examples are given in Section 7. Concluding 
remarks are given in Section 8. 

To the best of the author’s knowledge singular fractional linear 
systems and electrical circuits have not been considered yet. 

The following notation will be used in the paper. 

The set of mn  real matrices will be denoted by mn  and 

.: 1 nn  The set of nm  real matrices with nonnegative 

entries will be denoted by nm
  and .: 1

  nn  The set of 

nonnegative integers will be denoted by Z  and the nn  

identity matrix by .nI  

2. FRACTIONAL CONTINUOUS-TIME LINEAR SYSTEMS 

The following Caputo definition of the fractional derivative will 
be used (Kaczorek, 2007; Kucera and Zagalak, 1988): 
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where     is the order of fractional derivative,   ( )  
   ( )

     

and  ( )  ∫          
 

 
 is the gamma function. 

Consider the continuous-time fractional linear system de-
scribed by the state equation: 
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where  ( )      ( )     are the state and input vectors 

and       ,       . 
Theorem 2.1. The solution of equation (2.2) is given by: 
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Proof is given in Kaczorek (2010a, b). 

Remark 2.1. From (2.4) and (2.5) for     we have: 
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3. SINGULAR FRACTIONAL CONTINUOUS-TIME  
LINEAR SYSTEMS 

Consider singular fractional linear system described by the 
state equations: 
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d
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                                              (3.1a)  

)()()( tDutCxty                                                           (3.1b)                                          

where  ( )      ( )    ,  ( )     are the state, input 

and output vectors and         ,       ,       , 

      . 
The initial condition for (3.1a) is given by: 

0)0( xx                                           (3.1c) 

It is assumed that the pencil of the pair (E, A) is regular, i.e. 

0]det[  AEs                                      (3.2) 

for some     (the field of complex numbers). It is well-known 
(Fahmy and O’reill, 1989; Kaczorek, 1992)) that if the pencil 
is regular then there exists a pair of nonsingular matrices     
     such that: 
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where:    is equal to degree of the polynomial           , 
         ,          is a nilpotent matrix with the index   
(i.e.      and        and        ). 

Applying to the Eq. (3.1a) with zero initial conditions      

the Laplace transform (L) we obtain: 
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where  ( )     ( )  ∫  ( )      
 

 
 and  ( )     ( ) . By 

assumption (3.2) the pencil [     ] is regular and we may 
apply the decomposition (3.3) to Eq. (3.1a). 

Premultiplying Eq. (3.1a) by the matrix        
and introducing the new state vector:  
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we obtain: 
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Using (2.3) we obtain the solution to Eq. (3.6a) in the form: 
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and 1
10

n
x   is the initial condition for (3.6a) defined by: 
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To find the solution of Eq. (3.6b) we apply to the equation  
the Laplace transform and we obtain: 
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for 0 < α < 1 
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and Ni
 = 0 for i = µ, µ + 1, … 

Substitution of (3.10) into (3.9) yields: 
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Using inverse Laplace transform (   ) to (3.12) and the 
convolution theorem we obtain for 1 – α > 0: 































1

1

201)1(

1)1(
1

2

2022
1

2

)(

)1(
)()]([)(















i
i

i
i

i

i
i x

dt

d
Ntu

dt

d
BN

t
NxtuBsXtx L

    (3.13)  

since 
)1(

1
1

1





 











 t

s
L  for α +1 >0. 

Therefore the following theorem has been proved. 
Theorem 3.1. The solution to Eq. (3.1a) with the initial condition 
(3.1c) has the form 
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where x1(t) and x2(t) are given by (3.7) and (3.13) respectively. 
Knowing the solution (3.14) we can find the output y(t) of the 
system using the formula 
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4. SINGULAR FRACTIONAL ELECTRICAL CIRCUITS 

Let the current iC(t) in the supercondensator with the capacity 
C be the α order derivative of its charge q(t) (Gantmacher, 1960): 





dt

tqd
tiC

)(
)(                                         (4.1) 

Taking into account that q(t) = CuC(t) we obtain: 
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where uC(t) is the voltage on the supercondensator. 
Similarly, let the voltage uL(t) on the supercoil (inductor) with 

the inductance L be the β order derivative of its magnetic flux 
ψ(t): 





dt

td
tuL

)(
)(


                                       (4.3) 

Taking into account that ψ(t) = LiL(t) we obtain 
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where iL(t) is the current in the supercoil. 

Example 4.1. Consider electrical circuit shown in Fig. 1 with given 
resistance R, capacitances C1, C2, C3 and source voltages e1 
and e2. 

Using the Kirchhoff’s laws we can write for the electrical circuit 
the equations: 
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The equations (4.5) can be written in the form: 
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In this case we have: 
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Note that the matrix E is singular (det E = 0) but the pencil: 
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is regular. Therefore, the electrical circuit is a singular fractional 
linear system. 

 
Fig.1. Electrical circuit 

Remark 4.1. If the electrical circuit contains at least one mesh 
consisting of branches with only ideal supercondensators and 
voltage sources then its matrix E is singular since the row 
corresponding to this mesh is zero row. This follows from the fact 
that the equation written by the use of the voltage Kirchhoff’s law 
is algebraic one. 
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Example 4.2. Consider electrical circuit shown in Fig. 2 with given 
resistances R1, R2, R3 inductances L1, L2, L3 and source voltages 
e1 and e2. 

Using  the Kirchhoff’s laws we can write for the electrical 
circuit the equations: 
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The equations (4.9) can be written in the form: 
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In this case we have: 
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Note that the matrix E is singular but the pencil: 
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is regular. Therefore, the electrical circuit is a singular fractional 
linear system. 

 
Fig.2. Electrical circuit 

Remark 4.2. If the electrical circuit contains at least one node with 
branches with supercoils then its matrix E is singular since it has 

at least one zero row. This follows from the fact that the equation 
written using the current Kirchhoff’s law for this node is algebraic 
one. 

In general case we have the following theorem. 
Theorem 4.1. Every electrical circuit is a singular fractional system 
if it contains at least one mesh consisting of branches with only 
ideal supercondensators and voltage source or at least one node 
with branches with supercoils. 
Proof. By Remark 2.1 the matrix E of the system is singular if the 
electrical circuit contains at least one mesh consisting of branches 
with only ideal supercondensators and voltage source. Similarly 
by Remark 2.2 the matrix E is singular if the electrical circuit 
contains at least one node with branches with supercoils.  

Using the solution (3.14) of Eq. (3.1a) we may find the 
voltages on the supercondensators and currents in the supercoils 
in the transient states of the singular fractional linear electrical 
circuits. Knowing the voltages and currents and using (3.15) 
we may find also any currents and voltages in the singular 
fractional linear electrical circuits. 
Example 4.3. (an continuation of Example 4.1) 
Using one of the well-known methods (Podlubny, 1999; Dodig 
and Stosic, 2009; Kaczorek, 1992) we can find for the pencil (4.8) 
the matrices: 
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which transform it to the canonical form (3.3) with: 
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Using the matrix B given by (4.7), (4.13) and (3.6c) we obtain: 
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from (3.7) we have: 
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In this case using (3.13) we obtain: 

)()( 22 tuBtx                                      (4.17) 

since N = [0].  
In a similar way we may find currents in the supercoils of the 

singular fractional electrical circuit shown in Fig. 2. 

5. FRACTIONAL DISCRETE-TIME LINEAR SYSTEMS 

Consider the singular fractional discrete-time linear system 
described by the state equation: 
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 , ,...}1,0{ Zi                  (5.1)                                           

where:             are the state and input vectors, 
      ,       ,        and the fractional difference 
of the order α is defined by: 
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It is assumed that: 

0det E                                                                                (5.4a) 

and: 

0]det[  AEz                                                                   (5.4b) 

for some     (the field of complex numbers). 
Lemma 5.1. (Fahmy and O’Reill, 1989; Kaczorek, 1992) If (5.4) 

holds then there exist nonsingular matrices          such 
that: 
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where:          is a nilpotent matrix with the index   (i.e. 

     and       ),          ,    is equal to degree 
of the polynomial: 
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and        . 
A method for computation of the matrices P and Q has been 

given in Van Dooren (1979). 

Using Lemma 5.1 we shall derive the solution xi to the 
equation (5.1) for a given initial conditions x0 and an input vector 

ui, Zi . 

6. SOLUTION OF THE SINGULAR FRACTIONAL  
DISCRETE-TIME LINEAR SYSTEMS 

Premultiplying the equation (5.1) by the matrix        
and introducing the new state vector:  
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we obtain: 
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and after using (5.5) and (6.1): 
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Taking into account (5.2) from (6.3) we obtain: 
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where:           
 . 

The solution  ̅ 
( )

 to the equation (6.5) is well-known 

(Kaczorek, 2007b; 2010) and it is given by the theorem. 

Theorem 6.1. The solution  ̅ 
( )

 of the equation (6.5) is given 

by the formula: 
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where the matrices Φi are determined by the equation: 
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To find the solution  ̅ 
( )

 of the equation (6.6) for     it is 

assumed that: 
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For (6.9) the equation (6.6) can be written in the form: 
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From (6.10) we have: 
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If N = 0 then from (6.6) we have: 
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This approach can be easily extended for : 

]...[ 21 hNNNblockdiagN                    (6.13) 

where:        has the form (6.9) and ∑      
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If the matrix N has the form: 
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the considerations are similar (dual). 

Note that the matrices (6.9) and (6.9’) are related by:
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7. EXAMPLES OF SINGULAR FRACTIONAL  
DISCRETE-TIME SYSTEMS 

Example 7.1. Find the solution xi of the singular fractional linear 
system (5.1) with the matrices: 
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for α = 0.5, ui = u, Zi  and                 (T denotes 

the transpose). 
It is easy to check that the matrices (7.1) satisfy the 

assumptions (5.4). In this case the matrices P and Q have the 
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The equations (6.5) and (6.6) have the forms: 
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and: 
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The desired solution of the singular fractional system with 
(7.1) is given by: 
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 are determined by (6.7) and (7.5), 

respectively. 
Example 7.2. Find the solution xi of the singular fractional linear 
system (5.1) with the matrices: 
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for α = 0.8, arbitrary ui, Zi  and Tx ]111[0  . 

It is easy to check that the matrices (7.10) satisfy 
the assumptions (5.4). In this case the matrices P and Q have 
the forms: 













































102

112

001

,

121

111

221

QP             (7.11) 

and: 

)2,1(

],1[,

11

10

01

,

100

010

002.0

0

0

,

010

000

001

0

0

21

11
2

1

1

1

2

1























































































nn

IAA
B

B
PB

PAQ
I

A

PEQ
N

I

n

n

n



      (7.12) 

In this case the equations (6.5) and (6.6) have the forms: 
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and: 
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The solution  ̅ 
( )

 of Eq. (7.13) with  ̅ 
( )

   can be easily 

found using (6.7) and (6.8). 
From (7.14) we have: 
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The desired solution of the singular fractional system 
with (7.10) is given by: 
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where:  ̅ 
( )

,  ̅ 
(  )

 and  ̅ 
(  )

 are determined by (7.13) and (7.16), 

respectively. 

8. CONCLUDING REMARKS 

The singular fractional linear systems and electrical circuits 
have been introduced. Using the Caputo definition of the fractional 
derivative, the Weierstrass regular pencil decomposition and the 
Laplace transform the solution to the state equation of singular 
fractional linear system has been derived (Theorem 3.1). Singular 
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fractional linear electrical circuits have been analyzed. It has been 
shown that every electrical circuit is a singular fractional system 
if it contains at least one mesh consisting of branches with only 
ideal supercondensators and voltage sources or at least one node 
with branches with supercoils (Theorem 4.1). The singular frac-
tional linear discrete-time systems have been introduced. Using 
the Weierstrass regular pencil decomposition the solution to the 
state equation of singular fractional linear discrete-time system 
has been derived. The method of finding of the solution to the 
singular fractional systems has been illustrated by two examples. 
The considerations have been illustrated by singular linear electri-
cal circuits. Those considerations can be extended for singular 
fractional linear systems with singular pencils. Open problem are 
extension of these considerations for positive singular fractional 
linear systems and for singular positive linear systems with differ-
ent fractional order. The linear systems with different fractional 
orders are described by the equation (Kaczorek, 2007a). 
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where:       ,        are the state vectors and     

      ,         ,         and      is the input 
vector. Initial conditions for (8.1) have the form   ( )        

and   ( )     . 
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