PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical procedure of solving some inverse problem in solidification of the binary alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a solution of an inverse problem consisting in determination of boundary conditions in the process of binary alloy solidification when temperature measurements in selected points of the cast are known. In the investigated model the distribution of temperature is described using the Stefan model with the liquidus temperature varying in dependance on concentration of the alloy component. For description of the concentration we apply the model in which the immediate equalization of chemical composition of the alloy is assumed (lever arm model). Experimental verifcation of the developed algorithm is also presented.
Rocznik
Strony
393--402
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] V. Alexiades, A.D. Solomon. Mathematical Modeling of Melting and Freezing Processes. Hemisphere Publ. Corp., Washington, 1993.
  • [2] A. Bokota. Modelling of solidification and cooling of two-component metal alloys, fields of temperature, concentrations and stresses [in Polish: Modelowanie krzepnięcia i stygnięcia dwuskładnikowych stopów metali. Pola temperatury, stężeń i naprężeń]. Wyd. Pol. Częstochowskiej, Częstochowa, 2001.
  • [3] J. Crank. Free and Moving Boundary Problems. Clarendon Press, Oxford, 1996.
  • [4] J.D. Foley, A. van Dam, S.K. Freiner, J.F. Hughes, R.L. Phillips. Computer Graphics – Principles and Practice. Addison-Wesley, San Diego, 1990.
  • [5] E. Fraś. Crystallization of metals [in Polish: Krystalizacja metali]. WNT, Warszawa, 2003.
  • [6] B. Ganapathysubramanian, N. Zabaras. Control of solidification of non-conducting materials using tailored magnetic fields. J. Crystal Growth, 276: 299–316, 2005.
  • [7] B. Ganapathysubramanian, N. Zabaras. On the control of solidification using magnetic fields and magnetic field gradients. Int. J. Heat Mass Transfer, 48: 4174–4189, 2005.
  • [8] S.C. Gupta. The Classical Stefan Problem. Basic Concepts, Modelling and Analysis. Elsevier, Amsterdam, 2003.
  • [9] W. Kapturkiewicz, E. Fraś, A.A. Burbelko. Modeling the kinetics of solidification of cast iron with lamellargraphite. Arch. Metall. Mater., 54: 369–380, 2009.
  • [10] W. Kurz, D.J. Fisher. Fundamentals of Solidification. Trans Tech Publ., Zurich, 1989.
  • [11] E. Majchrzak, B. Mochnacki. Application of the BEM in the thermal theory of foundry. Eng. Anal. Bound. Elem., 16: 99–121, 1995.
  • [12] E. Majchrzak, B. Mochnacki, J.S. Suchy. Sensitivity analysis of macrosegregation simulation with respect to partition and diffusion coefficients. Int. J. Cast Metals Research, 17: 72–78, 2004.
  • [13] E. Majchrzak, R. Szopa. Simulation of heat and mass transfer in domain of solidifying binary alloy. Arch. Metallurgy, 43: 341–351, 1998.
  • [14] B. Mochnacki, E. Majchrzak, R. Szopa. Simulation of heat and mass transfer in domain of casting made from binary alloy. Arch. Foundry Eng., 8(4): 121–126, 2008.
  • [15] B. Mochnacki, J.S. Suchy. Numerical Methods in Computations of Foundry Processes. PFTA, Cracow, 1995.
  • [16] B. Mochnacki, J.S. Suchy. Simplified models of macrosegregation. J. Theor. Appl. Mech., 44: 367–379, 2006.
  • [17] B. Mochnacki, J.S. Suchy, M. Prażmowski. Modelling of segregation in the process of Al-Si alloy solidification. Soldification of Metals and Alloys, 2(44): 229–234, 2000.
  • [18] R. Parkitny, T. Skrzypczak. Simulation of solidification of two-component metal alloys taking the admixture distribution under consideration [in Polish: Symulacja krzepni¸ecia dwuskładnikowych stopów metali z uwzgl¸ednieniem rozkładu domieszki]. Arch. Foundry, 2(4): 198–203, 2002.
  • [19] D. Samanta, N. Zabaras. Numerical study of macrosegregation in aluminum alloys solidifying on uneven surfaces. Int. J. Heat Mass Transfer, 48: 4541–4556, 2005.
  • [20] D. Samanta, N. Zabaras. Control of macrosegregation during the solidification of alloys using magnetic fields. Int. J. Heat Mass Transfer, 49: 4850–4866, 2006.
  • [21] C.A. Santos, J.M.V. Quaresma, A. Garcia. Determination of transient interfacial heat transfer coefficients in chill mold castings. J. Alloys and Compounds, 319: 174–186, 2001.
  • [22] N. Sczygiol. Numerical modelling of thermo-mechanical phenomena in a solidifying casting and a mould [in Polish: Modelowanie numeryczne zjawisk termomechanicznych w krzepn¸acym odlewie i formie odlewniczej]. Wyd. Pol. Czestochowskiej, Czestochowa, 2000.
  • [23] D. Słota. Solving the inverse Stefan design problem using genetic algorithms. Inverse Probl. Sci. Eng., 16: 829–846, 2008.
  • [24] D. Słota. Identification of the cooling condition in 2-D and 3-D continuous casting processes. Numer. Heat Transfer B, 55: 155–176, 2009.
  • [25] D. Słota. Restoring boundary conditions in the solidification of pure metals. Comput. & Structures, 89: 48–54, 2011.
  • [26] J.S. Suchy. Segregation of alloying elements during directional solidification [in Polish: Segregacja pierwiastkøw stopowych podczas krzepniecia kierunkowego]. Zeszyty Nauk. Pol. Śl. Mech., 76: 1–132, 1983.
  • [27] J.S. Suchy. Segregation of alloying elements in continuous casting technology [in Polish: Segregacja pierwiastków stopowych w technologii ci¸agłego odlewania]. Zeszyty Nauk. Pol. Cz¸estochowskiej Hut., 19: 169–180, 1988.
  • [28] J.S. Suchy, B. Mochnacki. Analysis of segregation process using the broken line model. Theoretical base. Arch.Foundry, 3(10): 229–234, 2003.
  • [29] R. Szopa. Modelling of solidification and crystallization using combined boundary element method [in Polish: Modelowanie krzepniecia i krystalizacji z wykorzystaniem kombinowanej metody elementów brzegowych]. Zeszyty Nauk. Pol. Śl. Hut., 54: 1–175, 1999.
  • [30] V.R. Voller. A similarity solution for the solidification of a multicomponent alloy. Int. J. Heat Mass Transfer, 40: 2869–2877, 1997.
  • [31] V.R. Voller. A numerical method for the Rubinstein binary-alloy problem in the presence of an under-cooled liquid. Int. J. Heat Mass Transfer, 51: 696–706, 2008.
  • [32] D. Xu, Q. Li. Numerical method for solution of strongly coupled binary alloy solidification problems. Numer. Heat Transfer B, 20: 181–201, 1991.
  • [33] G.Z. Yang, N. Zabaras. The adjoint method for an inverse design problem in the directional solidification of binary alloys. J. Comput. Phys., 140: 432–452, 1998.
  • [34] M. Zalznik, S. Xin, B. Sarler. Verification of a numerical model of macrosegregation in direct chill casting. Int.J. Numer. Methods Heat Fluid Flow, 18: 308–324, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBF-0002-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.