Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the two-dimensional finite element with an embedded edge crack proposed by Potirniche et al. (2008) is improved further for crack depth ratios ranging up to 0.9 and for predicting the natural frequency of a cracked beam more accurately. The element is implemented in the commercial finite element code ABAQUS as user element subroutine. The accuracy of the proposed improved cracked element is verified by comparing the predicted, first natural frequency with available experimental data. Subsequently, a methodology to detect the crack’s location and size in conjunction with the proposed improved cracked element is also presented.
Rocznik
Tom
Strony
213--239
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
autor
- Structural Engineering Division, Department of Civil Engineering Indian Institute of Technology Madras Chennai 600 036, India, bnrao@iitm.ac.in
Bibliografia
- [1] ABAQUS version 6.5. Hibbit, Karlson & Sorensen, Inc., Pawtucket, RI (USA), 2004.
- [2] S. Chinchalkar. Determination of crack location in beams using natural frequencies. J. Sound Vib., 247(3):417–429, 2001.
- [3] T.G. Chondros, A.D. Dimarogonas, J. Yao. A continuous cracked beam vibration theory. J. Sound Vib., 215:17–34, 1998.
- [4] T.G. Chondros, A.D. Dimarogonas, J. Yao. Vibration of a beam with a breathing crack. J. Sound Vib., 239:57–67, 2001.
- [5] M. Dilena, A. Morassi. The use of antiresonances for crack detection in beams. J. Sound Vib., 276: 195–214,2004.
- [6] M. Dilena, A. Morassi. Damage detection in discrete vibrating systems. J. Sound Vib., 289: 830–850, 2006.
- [7] M. Dilena, A. Morassi. Identification of crack location in vibrating beams from changes in node positions. J. Sound Vib., 255(5): 915–930, 2002.
- [8] S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. Los Alamos National Laboratory, Los Alamos, NM, Technical Report LA-13070-MS, 1996.
- [9] G. Dong, J. Chen, J. Zou. Parameter identification of a rotor with an open crack. Eur. J. Mech. A Solids, 23: 325–333, 2004.
- [10] S. Gondhalekar. Development of a software tool for crack propagation analysis in two dimensional layered structures. M.S. Thesis, Kansas State University, 1992.
- [11] G.D. Gounaris, C.A. Papadopoulos, A.D. Dimarogonas. Crack identification in beams by coupled response measurements. Comp. Struct., 58: 299–305, 1996.
- [12] M.A. James, D.V. Swenson. A software framework for two dimensional mixed mode- I/II elastic-plastic fracture. Mixed-Mode Crack Behavior, ASTM STP 1359, K. J. Miller and D. L. McDowell, Eds., Am. Soc. Test. Mats, West Conshohocken, PA, 111–126, 1999.
- [13] M. Krawczuk, M. Palacz, W. Ostachowicz. The dynamic analysis of a cracked Timoshenko beam by the spectral element method. J. Sound Vib., 264: 1139–1153, 2003.
- [14] S.P. Lele, S.K. Maiti. Modelling of transverse vibration of short beams for crack detection and measurement of crack extension. J. Sound Vib., 257(3): 559–583, 2002.
- [15] B. Li, X. Chen, J. Ma, Z. He. Detection of crack location and size in structures using wavelet finite element methods. J. Sound Vib., 285: 767–782, 2005.
- [16] R.Y. Liang, F.K. Choy, J. Hu. Detection of cracks in beam structures using measurements of natural frequencies.J. Franklin Inst., 328(4): 505–518, 1991.
- [17] M.A. Mahmoud, M. Abu Zaid, S. Al Harashani. Numerical frequency analysis of uniform beams with a transverse crack. Comm. Num. Meth. Eng., 15: 709–715, 1999.
- [18] MATLAB version 7.10. The Mathworks Inc., Natwick, MA (USA), 2010.
- [19] D. Montalvao, N.M.M. Maia, A.M.R. Ribeiro. A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib. Digest, 38(4): 295–324, 2006.
- [20] A. Morassi. Identification of a crack in a rod based on changes in a pair of natural frequencies. J. Sound Vib., 242(4): 577–596, 2001.
- [21] B.P. Nandwana, S.K. Maiti. Modelling of vibration of beam in presence of inclined edge or internal crack for its possible detection based on frequency measurements. Engg. Frac. Mech., 58(3): 193–205, 1997.
- [22] P.G. Nikolakopoulos, D.E. Katsareas, C.A. Papadopoulos. Crack identification in frame structures. Comp. Struct., 64(1–4): 389–406, 1997.
- [23] G. Owolabi, A. Swamidas, R. Seshadri. Crack detection in beams using changes in frequencies and amplitudes of frequency response functions. J. Sound Vib., 265: 1–22, 2003.
- [24] C.A. Papadopoulos, A.D. Dimarogonas. Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. J. Sound Vib., 117: 81–93, 1987.
- [25] D.P. Patil, S.K. Maiti. Detection of multiple cracks using frequency measurements. Engg. Frac. Mech., 70(12): 1553–1572, 2003.
- [26] G.P. Potirniche, J. Hearndon, S.R. Daniewicz, D. Parker, P. Cuevas, P.T. Wang, M.F. Horstemeyer. A twodimensional damaged finite element for fracture applications. Engg. Frac. Mech., 75: 3895–3908, 2008.
- [27] O.S. Salawu. Detection of structural damage through changes in frequency: A review. Engg. Struct., 19(9): 718–723, 1997.
- [28] E.I. Shifrin, R. Ruotolo. Natural frequencies of a beam with an arbitrary number of cracks. J. Sound Vib., 222(3): 409–423, 1999.
- [29] J.M. Silva, A.J.L. Gomes. Experimental dynamic analysis of cracked free-free beams. Exp. Mech., 30(1): 20–25, 1990.
- [30] J.-J. Sinou. Damage assessment based on the frequencies’ ratio surfaces intersection method for the identification of the crack depth, location and orientation. Struct. Dur. Health Monitor, 3(3:) 134–162, 2007-a.
- [31] J.-J. Sinou. Numerical investigations of a robust identification of crack location and size in beams using only changes in ratio pulsations of the cracked beams. Struct. Eng. Mech., 25(6): 691–716, 2007-b.
- [32] H. Sohn, C. Farrar, F. Hemez, D. Shunk, D. Stinemates, B. Nadler. A review of structural health monitoringliterature: 1996–2001. Los Alamos National Laboratory, Los Alamos, NM, Technical Report LA-13976-MS, 2003.
- [33] A. Swamidas, X. Yang, R. Seshadri. Identification of cracking in beam structures using Timoshenko and Eulerformulations. J. Eng. Mech., ASCE, 130(11): 1297–1308, 2004.
- [34] H. Tada, P.C. Paris, G.R. Irwin. The Stress Analysis of Cracks Handbook, 3 edition, ASME Press, Am. Soc. Mech. Eng. Three Park Avenue, New York, NY, 2000.
- [35] P.A. Wawrzynek, A.R. Ingraffea. Interactive finite element analysis of fracture processes: an integrated approach. Theor. Appl. Fract. Mech., 8: 137–150, 1987.
- [36] P.A.Wawrzynek, A.R. Ingraffea. FRANC2D: Two-dimensional crack propagation simulator, Version 2.7 User’s Guide. NASA CR 4572, 1994.
- [37] D. Wendtland. Anderung der biegeegenfrequenzen einer idealisierten Schaufel durch Risse. Ph.D. Dissertation, University of Karlsruhe, 1972.
- [38] X.F. Yang, A.S.J. Swamidas, R. Seshadri. Crack identification in vibrating beams using the energy method. J. Sound Vib., 244(2): 339–357, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBF-0001-0003