PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational challenges in the simulation of nonlinear electroelasticity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nonlinear electroelasticity is not a new problem, its theory involving nonlinear deformation and nonlinear material behavior has been well established. However, the numerical simulation of nonlinear electroelas- ticity is until now still far from satisfactory, especially when the interaction between electric fields and matter cannot be considered as confined in the finite space occupied by the matter. It is understood that under the application of an electric field, the deformation of an elastic body is governed not always by what happens inside the material body but in many cases also by the environment surrounding it. This is notably true in the case of electronic electroactive polymers, the materials that emerge today as a lead- ing candidate in developing artificial muscles. In this work, we present a numerical analysis of nonlinear electroelasticity by assuming large deformation, nonlinear polarization and by paying attention to the contribution of the free space surrounding the bodies of interest.
Rocznik
Strony
199--213
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] C. Brebbia. The boundary element method for engineers. John Wiley & Sons, New York, 1978.
  • [2] J. Bonet and R.D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997.
  • [3] Q. Chen and A. Konrad. A review of finite element open boundary techniques for static and quasistatic electromagnetic field problems. IEEE Transactions on Magnetics, 33: 663–676, 1997.
  • [4] A. Dorfmann and R.W. Ogden. Nonlinear electroelasticity. Acta Mechanica, 174: 167–183, 2005.
  • [5] A.C. Eringen and G.A. Maugin. Electrodynamics of continua. Volume 1 – Foundations and solid media. SpringerVerlag, New York, 1989.
  • [6] R.M. McMeeking and C.M. Landis. Electrostatic forces and stored energy for deformable dielectric materials. Journal of Applied Mechanics – American Society of Mechanical Engineers – ASME, 72: 581–590, 2005.
  • [7] P. Steinmann. Computational nonlinear electro-elasticity – Getting started. Lecture notes. Mechanics and electrodynamics of magneto- and electro-elastic materials. CISM Summer School, International Centre for Mechanical Sciences. Udine, Italy, June 29 – July 3, 2009.
  • [8] D.K. Vu and P. Steinmann. A 2-D coupled BEM-FEM simulation of electro-elastostatics at large strain. Comput. Methods Appl. Mech. Engng., 199: 1124–1133, 2010.
  • [9] D.K. Vu and P. Steinmann. On 3-D coupled BEM-FEM simulation of nonlinear electro-elastostatics. Comput. Methods Appl. Mech. Engng., submitted for publication.
  • [10] D.K. Vu and P. Steinmann. Numerical simulation of electric electro-active polymers. Proceedings, Sensor+Test Conferences 2011, AMA Service GmbH, Germany, pp. 323–327, 2011
  • [11] D.K. Vu, P. Steinmann, G. Possart. Numerical modeling of nonlinear electroelasticity. Int. J. Numer. Meth. Eng., 70: 685–704, 2007.
  • [12] L.C. Wrobel. The boundary element method. Volume 1: application in thermo-fluids and acoustics. John Wiley & Sons, New York, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBF-0001-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.