PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrostatic methods in analysis of acoustic beam-forming structures

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work aims to present extensions of the developed methods used in electrostatic analysis of planar periodic and ?nite systems for e?cient solving of variety of the acoustic and electromagnetic wave generation and scattering problems. Specifically, their generalization for application in the acoustic beamforming analysis is reported. Moreover, certain electromagnetic wave scattering problems by periodic waveguiding structures which can be e?ciently approached by these methods are also considered. The monograph consists of seven Chapters. The Chapter 1 presents the introduction where the main objectives of the work are outlined. Mathematical principles of the electrostatic methods which are dealt with in the following are presented in details in the Chapter 2. The cases of in?nite periodic and finite aperiodic systems of in?nitesimally thin electrodes (conducting strips), generally having arbitrary widths and spacings, are considered separately. In the Chapter 3 the electrostatic methods are generalized and extended to the acoustic beam-forming analysis by linear transducer arrays. The mixed boundary-value problem is stated and solved for the cases of infinite periodic and finite aperiodic arrays of rigid baffles. Also, the developed method of the angular directivity function evaluation for a linear transducer array with arbitrary excitation is presented. In the Chapters 4 and 5 several examples illustrating practical applicability of the developed methods are discussed. Specifically, in the Chapters 4 a developed modified multi-element synthetic transmit aperture algorithm for ultrasound imaging, which incorporates the developed method of linear transducer array modeling, is reported. And in the Chapter 5 a two-dimensional electrostrictive transducer array is analyzed. In the Chapter 6 generalization of the electrostatic methods to the electromagnetic wave scattering analysis is presented. Speci?cally, the problems of electromagnetic wave scattering by periodic gratings like a thick-walled parallel-plate waveguide array and a periodic system of conducting electrodes of finite thickness are considered. Finally, the Chapter 7 concludes the monograph.
PL
Podstawowym celem pracy jest przedstawienie opracowanych uogólnionych metod analizy zagadnień elektrostatyki układów planarnych zarówno periodycznych jak i nieperiodycznych, zawierających skończoną ilość elementów, do celów efektywnego rozwiązywania zagadnień brzegowych w teorii generacji i detekcji fal akustycznych oraz analizy zagadnień brzegowych w teorii fal elektromagnetycznych dla przypadku struktur falowodowych. Monografia składa się z siedmiu Rozdziałów. Rozdział 1 stanowi wprowadzenie w którym omówiony został cel i zakres pracy. Matematyczne podstawy metod elektrostatyki, rozwijane i generalizowane w dalszej części monografii, zostały szczegółowo omówione w Rozdziale 2. Tu osobno rozpatrzono przypadki periodycznego oraz nieperiodycznego układów infinitezymalnie cienkich elektrod (przewodzących pasków), w ogólnym przypadku o różnych szerokościach oraz odstępach. W Rozdziale 3 przedstawiono uogólnienie metod elektrostatyki do analizy mieszanego zagadnienia brzegowego dla układów sztywnych przegród, zarówno periodycznych jak i zawierających skończoną ilość elementów, oraz zaprezentowano opracowany model analityczno-numeryczny do obliczania charakterystyki promieniowania liniowych szyków przetworników akustycznych dla dowolnego pobudzenia. Przykłady praktycznego zastosowania opracowanych metod przedstawione zostały w Rozdziałach 4 oraz 5. Mianowicie, w Rozdziale 4 zaprezentowano oryginalny nowoczesny algorytm wieloelementowej syntetycznej apertury nadawczej (ang. multi-element synthetic transmit aperture) dla obrazowania ultrasonograficznego, w którym została zaimplementowana opracowana metoda modelowania liniowych szyków przetworników ultradźwiękowych. Z kolei w Rozdziale 5 przedstawiona została analiza modelu dwuwymiarowej macierzy przetworników elektrostrykcyjnych. W Rozdziale 6 przedstawiono uogólnienie metod elektrostatyki do analizy zjawisk rozpraszania fal elektromagnetycznych dla periodycznych struktur falowodowych takich jak periodyczny układ falowodów płaskich o grubych ściankach oraz periodyczny układ przewodzących elektrod o skończonej grubości. Na koniec, Rozdział 7 przedstawia podsumowanie monografii.
Rocznik
Tom
Strony
3--159
Opis fizyczny
Bibliogr. 134 poz.
Twórcy
  • Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk
Bibliografia
  • 1. K. E. Thomenius. Evolution of ultrasound beamformers. Proc. 1996 IEEE Ultrason. Symp., pages 1615–1622, 1996.
  • 2. R. J. Zemp, C. K. Abbey, and M. F. Insana. Linear system models for ultrasonic imaging: application to signal statistics. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 50(6):642–654, JUN 2003.
  • 3. V. A. Kramb. Use of phased array ultrasonics for automated aerospace testing applications. Materials Evaluation, 65(1):67–73, JAN 2007.
  • 4. J. D. Buttram. Manual ultrasonic phased array technique for accurate through- wall sizing of planar discontinuities in dissimilar metal welds. Materials Evaluation, 65:62–66, 2007.
  • 5. B. W. Drinkwater and P. D. Wilcox. Ultrasonic arrays for non-destructive evaluation: A review. NDT & E International, 39(7):525–541, OCT 2006.
  • 6. S. Chatillon, G. Cattiaux, M. Serre, and O. Roy. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible array transducer. Ultrasonics, 38(1-8):131–134, MAR 2000.
  • 7. S. Mahaut, O. Roy, C. Beroni, and B. Rotter. Development of phased array techniques to improve characterization of defect located in a component of complex geometry. Ultrasonics, 40(1-8):165–169, MAY 2002.
  • 8. S. Chatillon, L. de Roumilly, J. Porre, C. Poidevin, and P. Calmon. Simulation and data reconstruction for ndt phased array techniques. Ultrasonics, 44:e951–e955, 2006.
  • 9. R. Huang and L. W. Schmerr Jr. Characterization of the system functions of ultrasonic linear phased array inspection systems. Ultrasonics, 49(2):219–225, FEB 2009.
  • 10. W. Rotman and R. Turner. Wide-angle microwave lens for line source applications. IEEE Trans. Antennas Propagat., 11(6):623–632, JUN 1963.
  • 11. P. S. Naidu. Sensor Array Signal Processing. CRC Press, Boca Raton, 2001.
  • 12. E. Kuhnicke. Plane arrays - fundamental investigations for correct steering by means of sound field calculations. Wave Motion, 44(4):248–261, MAR 2007.
  • 13. S. C. Wooh and Y. J. Shi. Influence of phased array element size on beam steering behavior. Ultrasonics, 36(6):737–749, APR 1998.
  • 14. R. Y. Chiao and L. J. Thomas. Analytic evaluation of sampled aperture ultrasonic-imaging techniques for nde. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 41(4):484–493, JUL 1994.
  • 15. R Ahmad, T Kundu, and D Placko. Modeling of phased array transducers. J. Acoust. Soc. Am., 117(4):1762–1776, Part 1 APR 2005.
  • 16. F. Lingvall, T. Olofsson, and T. Stepinski. Synthetic aperture imaging using sources with finite aperture: Deconvolution of the spatial impulse response. J. Acoust. Soc. Am., 114(1):225–234, JUL 2003.
  • 17. R Lerch. Simulation of piezoelectric devices by 2-dimensional and 3- dimensional finite-elements. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 37(3):233–247, MAY 1990.
  • 18. G. G. Yaralioglu, A. S. Ergun, and B. T. Khuri-Yakub. Finite-element analysis of capacitive micromachined ultrasonic transducers. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 52(12):2185–2198, DEC 2005.
  • 19. M. Wilm, R. Armati, W. Daniau, and S. Ballandras. Cross-talk phenomena in a 1-3 connectivity piezocomposite. J. Acoust. Soc. Am., 116(5):2948–2955, MAY 2004.
  • 20. A. McNab, A. Cochran, and M. A. Campbell. The calculation of acoustic fields in solids for transient normal surface sources of arbitrary geometry and apodisation. J. Acoust. Soc. Am., 87(4):1455–1465, APR 1990.
  • 21. A. McNab, A. Cochran, and M. A. Campbell. The calculation of acoustic fields in solids for transient normal surface sources of arbitrary geometry and apodisation. J. Acoust. Soc. Am., 87(4):1455–1465, APR 1990.
  • 22. S. C. Wooh and Y. Shi. Three-dimensional beam directivity of phasesteered ultrasound. J. Acoust. Soc. Am., 105(6):3275–3282, JUN 1999.
  • 23. B. Erbas and I. D. Abrahams. Scattering of sound waves by an infinite grating composed of rigid plates. Wave Motion, 44(4):282–303, MAR 2007.
  • 24. J. D. Achenbach and Z. L. Li. Reflection and transmission of scalar waves by a periodic array of screens. Wave Motion, 8(3):225–234, MAY 1986.
  • 25. E. J. Danicki. Electrostatics of interdigital transducers. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 51(4):444–452, APR 2004.
  • 26. E. J. Danicki. Strip electrostatics - spectral approach. Proc. 1996 IEEE Ultrason. Symp., pages 193–196, 1996.
  • 27. Y. Tasinkevych. Methods of idt charge spatial spectrum evaluation. J. Tech. Phys., 45:155–172, 2004.
  • 28. J. Boersma and E. Danicki. On the solution of an integral equation arising in potential problems for circular and elliptic disks. SIAM J. Appl. Math., 53(4):931–941, AUG 1993.
  • 29. R. E. Collin. Field theory of guided waves. New York: McGraw-Hill, 1960.
  • 30. D. S. Jones. The Theory of Electromagnetism. Pergamon Press, OxfordLondon-New York-Paris, 1964.
  • 31. N. G. Green, A. Ramos, and H. Morgan. Numerical solution of the dielectrophoretic and traveling wave forces for interdigitated electrode arrays using the finite element method. J. Electrostatatics, 56:235–254, 2002.
  • 32. N. I. Mushelishvili. Singular integral equations. Moscow: Nauka, 1946.
  • 33. Y. Tasinkevych. Electrostatics: Theory and Applications, chapter Electrostatics of planar system of conducting strips, pages 189–221. New York: Nova Science Pub Inc., 2011.
  • 34. K. Blotekjaer, K. A. Ingebrigtsen, and H. Skeie. Methods for analyzing waves in structures consisting of metal strips on dispersive media. IEEE Trans. Electron Devices, ED20(12):1133–1138, 1973.
  • 35. E. Danicki, B. Langli, and K. Blotekjaer. Spectral theory of em wave scattering by periodic strips. IEEE Trans. Antennas Propagat., 43(1):97–104, 1995.
  • 36. E. J. Danicki. Scattering by periodic cracks and theory of comb transducers. Wave Motion, 35(4):355–370, APR 2002.
  • 37. E. J. Danicki and Y. Tasinkevych. Nonstandard electrostatic problem for strips. J. Electrostatics, 64(6):386–391, JUN 2006.
  • 38. E. J. Danicki and Y. Tasinkevych. On electrostatics of finite system of strips applied in surface acoustic wave interdigital transducers. J. Tech. Phys., 46:175–193, 2005.
  • 39. E. J. Danicki. Resonant phenomena in bulk-wave scattering by in-plane periodic cracks. J. Acoust. Soc. Am., 105(1):84–92, JAN 1999.
  • 40. S. Holm. Focused multi-element synthetic aperture imaging. Department of Informatics, University of Oslo, 1995.
  • 41. E. Danicki and Y. Tasinkevych. Beam-forming electrostrictive matrix. In Proc. 31th Int. Conf. Acoustical Imaging, pages 1–4, 2011.
  • 42. Y. Tasinkevych. Scattering of h-polarized wave by a periodic array of thick-walled parallel plate waveguides. IEEE Trans. Antennas Propagat., 56(10):3333–3337, OCT 2008.
  • 43. Y. Tasinkevych. Em scattering by the parallel plate waveguide array with thick walls for oblique incidence. J Electromagn. Waves Appl., 23(11-12):1611–1621, 2009.
  • 44. Y. Tasinkevych. Electromagnetic scattering by periodic grating of pec bars.J Electromagn. Waves Appl, 25(5-6):641–650, 2011.
  • 45. S. Peng and G. M. Morris. Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings. Optics Letters, 21(8):549–551, APR 1996.
  • 46. S. Peng and G. M. Morris. Resonant scattering from two-dimensional gratings. Journal of the Optical Society of America A-Optics Image Science and Vision, 13(5):993–1005, MAY 1996.
  • 47. C. M. Horwitz. New solar selective surface. Opt. Commun., 11(2):210–212, 1974.
  • 48. D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 47(11):2059–2074, NOV 1999.
  • 49. V. Veremey. Superdirective antennas with passive reflectors. IEEE Antennas and Propagation Magazine, 37(2):16–27, APR 1995.
  • 50. CR Simovski and SL He. Antennas based on modified metallic photonic bandgap structures consisting of capacitively loaded wires. Microw. Opt. Tech. Lett., 31(3):214–221, NOV 5 2001.
  • 51. M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, and D. D. Crouch. Waveguides in three-dimensional metallic photonic band-gap materials. Phys. Rev. B, 60(7):4426–4429, AUG 1999.
  • 52. B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck, and K. J. Malloy. Metallic inductive and capacitive grids: theory and experiment. Journal of the Optical Society of America A-Optics Image Science and Vision, 19(7):1352–1359, JUL 2002.
  • 53. L. Jelinek, R. Marques, F. Mesa, and J. D. Baena. Periodic arrangements of chiral scatterers providing negative refractive index bi-isotropic media. Physical Review B, 77(20):205110, May 2008.
  • 54. C.-W. Kuo and S.-Y. Chen. Analyzing the multilayer optical planar waveguides with double-negative metamaterial. PIERS, 110:163–178, 2010.
  • 55. B. Gimeno, J. L. Cruz, E. A. Navarro, and V. Such. Electromagnetic scattering by a strip grating with plane-wave 3-dimensional oblique-incidence by means of decomposition into e-type and h-type modes. J Electromagn. Waves Appl., 7(9):1201–1219, 1993.
  • 56. T. Kushta and K. Yasumoto. Electromagnetic scattering from periodic arrays of two circular cylinders per unit cell. Journal of Electromagnetic Waves and Applications, 14(6):853–854, 2000.
  • 57. E. J. Danicki and Y. Tasinkevych. Electrostatics of quasiperiodic system of conducting strips. In Proc. 17th Int. Conf. Microwaves, Radar and Wireless Communications MIKON 2008, pages 1–4, 2008.
  • 58. E. J. Danicki. Spectral theory of interdigital transducers of surface acoustic waves, chapter 3. http://www.ippt.gov.pl/∼edanicki/danickibook.pdf, 2006.
  • 59. D. P. Morgan. Surface acoustic wave devices. Elsevier Science Publishers B. V., Amsterdam, 1991.
  • 60. P. Moon and D. E. Spencer. Field theory for engineers. D. Van Nostrand Company Inc., Princeton, 1961.
  • 61. R Mittra and S. W. Lee. Analytical techniques in the theory of guided waves. The Macmillan Company, 1971.
  • 62. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher Transcendental Functions, volume 1, chapter 3, pages 166–167. McGrawHill, New York, 1953.
  • 63. Y. Tasinkevych. Numerical efficiency of interdigital transducers charge spatial spectrum evaluation methods. PhD thesis, IFTR, Polish Acad. Of Sci., Warsaw, 2004.
  • 64. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher Transcendental Functions, volume 1, chapter 3, pages 144–145. McGrawHill, New York, 1953.
  • 65. W. H. Press, S. A. Teukolsky, B. P. Vetterling, and B. P. Flannery. Numerical Recipes in C. The art of scientific computing. Cambridge University Press, second edition, 1992.
  • 66. J. T. Yen, J. P. Steinberg, and S. W. Smith. Sparse 2-d array design for real time rectilinear volumetric imaging. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 47(1):93–110, JAN 2000.
  • 67. C. H. Seo and J. T. Yen. 256x256 2-d array transducer with row-column addressing for 3-d imaging. Proc. 2007 IEEE Ultrason. Symp., pages 2381–2384, 2007.
  • 68. A. R. Selfridge, G. S. Kino, and B. T. Khuriyakub. A theory for the radiation pattern of a narrow-strip acoustic transducer. Appl. Phys. Lett., 37(1):35–36, 1980.
  • 69. J. A. Jensen and N. B. Svendsen. Calculation of pressure fields from arbitrary shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 39(2):262 – 267, Mar. 1992.
  • 70. P. Crombie, P. A. J. Bascom, and R. S. C. Cobbold. Calculating the pulsed response of linear arrays: Accuracy versus computational efficiency. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 44(5):997–1009, SEP 1997.
  • 71. M. W. Fedoryuk. The Steepest Descent Method, chapter 3. Nauka, Moscow, 1997.
  • 72. L. B. Felsen and N. Marcuvitz. Radiation and Scattering of Waves, volume 1, chapter 4. Prentice Hall, Englewood Cliffs, 1973.
  • 73. J. W. Goodman. Introduction to Fourier Optics. New York: McGraw-Hill, 2005.
  • 74. B. D. Steinberg. Principles of aperture and array system design including random and adaptive arrays. New York: John Wiley and Sons, 1976.
  • 75. Ch. Cook and M. Bernfeld. Radar Signals, An Introduction to Theory and Application, chapter 7. Academic Press, New York, 1967.
  • 76. Y. Tasinkevych. Wave generation by a finite baffle array in applications to beam-forming analysis. Archives of Acoustics, 35(4):677–686, 2010.
  • 77. R. M. Perry and L. W. Martinson. Radar matched filtering, Radar Technology, chapter 11, page 163–169. Artech House, Boston, 1978.
  • 78. A. Moreira. Real-time synthetic aperture radar (sar) processing with a new subaperture approach. IEEE Trans. Geosci. Remote Sens., 30(4):714–722, 1992.
  • 79. N. C. Yen and W. Carey. Application of synthetic aperture processing to towed-array data. J. Acoust. Soc. Am., 86(2):754–765, 1989.
  • 80. S. Stergiopoulos and E. J. Sullivan. Extended towed array processing by an overlap correlator. J. Acoust. Soc. Am., 86(1):158–171, 1989.
  • 81. K. Nagai. A new synthetic-aperture focusing method for ultrasonic bscan imaging by the fourier transform. IEEE Trans. Sonics Ultrason., 32(4):531–536, 1985.
  • 82. R. N. Thomson. Transverse and longitudinal resolution of the synthetic aperture focusing technique. Ultrasonics, 22(1):9–15, 1984.
  • 83. M. Karaman, Pai-Chi Li, and M. O’Donnell. Synthetic aperture imaging for small scale systems. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 42(3):429–442, 1995.
  • 84. G. R. Lockwood, J. R. Talman, and S. S. Brunke. Real-time 3-d ultrasound imaging using sparse synthetic aperture beamforming. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 45(4):980–988, 1998.
  • 85. I. Trots, A. Nowicki, and M. Lewandowski. Synthetic transmit aperture in ultrasound imaging. Archives of Acoustics, 34(4):685–695, 2009.
  • 86. J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen. Synthetic aperture ultrasound imaging. Ultrasonics, 44, Suppl.:e5–e15, 2006.
  • 87. P. J. Thoen. Aperture apodization to reduce the o -axis intensity of the pulsed-mode directivity fucntion of linear arrays. Ultrasonics, 20(5):231–236, 1982.
  • 88. C. M. W. Daft and W. E. Engeler. Windowing of wide-band ultrasound transducers. In Proc. 1996 IEEE Ultrasonics Symp., volume 2, pages 1541–1544, 1996.
  • 89. D. A. Guenther and W. F. Walker. Optimal apodization design for medical ultrasound using constrained least squares part ii simulation results. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 54(2):343–358, 2007.
  • 90. J.-F. Synnevg, A. Austeng, and S. Holm. A low-complexity data-dependent beamformer. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 58(2):281–289, 2011.
  • 91. S. Repetto and A. Trucco. A stochastic approach for the apodization of very short arrays. Ultrasonics, 42:425–429, 2004.
  • 92. S. M. Sakhaei, A. Mahloojifar, and H. Ghassemian. A transformation based method to design ultrasound array. Ultrasonics, 49(2):179–184, 2009.
  • 93. I. Trots, A. Nowicki, M. Lewandowski, and Y. Tasinkevych. Multi-element synthetic transmit aperture in medical ultrasound imaging. Arch. Acoust., 35(4):687–699, 2010.
  • 94. Y. Tasinkevych, I. Trots, A. Nowicki, and P. A. Lewin. Modified synthetic transmit aperture algorithm for ultrasound imaging. Ultrasonics, 52(2):333–342, 2012.
  • 95. J. W. Goodman. Introduction to Fourier Optics, page 49. McGraw-Hill, Roberts and Company Publishers, 2005.
  • 96. J. A. Jensen. Field: A program for simulating ultrasound systems. In 10th Nordic-Baltic Conference on Biomedical Imaging published in Medical & Biological Engineering & Computing, volume 34, page 351–353, 1996.
  • 97. http://fantom.dk/571.htm.
  • 98. Y. Tasinkevych, I. Trots, and A. Nowicki. Optimization in the multielement synthetic transmit aperture method for ultrasound imaging. In Proc. 31th Conference “Acoustical Imaging”, (in press), 2011.
  • 99. S. W. Smith, Jr. Pavy, H. G., and O. T. von Ramm. High-speed ultrasound volumetric imaging system. i. transducer design and beam steering. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 38(2):100–108, 1991.
  • 100. S. W. Smith, G. E. Trahey, and O. T. von Ramm. Two-dimensional arrays for medical ultrasound. In Proc. 1991 IEEE Ultrasonics Symp., pages 625–628, 1991.
  • 101. John W. Hunt, Marcel Arditi, and F. Stuart Foster. Ultrasound transducers for pulse-echo medical imaging. IEEE Trans. Biomedical Eng., (8):453–481, 1983.
  • 102. P. C. Eccardt, K. Niederer, and B. Fischer. Micromachined transducers for ultrasound applications. In Proc. 1997 IEEE Ultrason. Symp., volume 2, pages 1609–1618, 1997.
  • 103. E. D. Light, J. O. Fiering, P. A. Hultman, W. Lee, and S. W. Smith. Update of two dimensional arrays for real time volumetric and real time intracardiac imaging. In Proc. 1999 IEEE Ultrasonics Symp, volume 2, pages 1217–1220, 1999.
  • 104. S. W. Smith, W. Lee, E. D. Light, J. T. Yen, P. Wolf, and S. Idriss. Two dimensional arrays for 3-d ultrasound imaging. In Proc. 2002 IEEE Ultrason. Symp, volume 2, pages 1545–1553, 2002.
  • 105. H. C. Schau. Edge-connected, crossed-electrode array for two-dimensional projection and beamforming. IEEE Trans. Signal Process., 39(2):289–297, 1991.
  • 106. I. Fujishima, Y. Tamura, H. Yanagida, J. Tada, and T. Takahashi. Edgeconnected, crossed-electrode array comprising non-linear transducers. In Proc. 2009 IEEE Ultrason. Symp., pages 2221–2224, 2009.
  • 107. A. Pimpin, Y. Suzuki, and N. Kasagi. Micro electrostrictive actuator with metal compliant electrodes for flow control applications. In Proc. 17th IEEE Int Micro Electro Mechanical Systems Conf. (MEMS), pages 478–481, 2004.
  • 108. A. Strachan and W. A. Goddard. Large electrostrictive strain at gigahertz frequencies in a polymer nanoactuator: Computational device design. Applied Physics Letters, 86(8):083103, 2005.
  • 109. S. Resset, M. Niklaus, P. Dubois, M. Dadras, and H. Shea. Mechanical properties of electroactive polymer microactuators with ion implanted electrodes. In Proc. SPIE 6524, page 652410, 2007.
  • 110. E. J. Danicki. Electrostatics of crossed arrays of strips [correspondence]. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 57(7):1701–1705, 2010.
  • 111. E. Danicki and Y. Tasinkevych. Beam-forming electrostrictive matrix. In Proc. 31 International Symposium on Acoustical Imaging, volume 31. Springer, 2011.
  • 112. E. J. Danicki. A method for analyzing periodic strips with apodization. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 55(9):1890–1894, 2008.
  • 113. O. P. Thakur and A. K. Singh. Electrostriction and electromechanical coupling in elastic dielectrics at nanometric interfaces. Material Science, 27:839–850, 2009.
  • 114. Q. Jiang and Z. B. Kuang. Stress analysis in two dimensional electrostrictive material with an elliptic rigid conductor. Europ. J. Mech. A/Solids, 23:945–956, 2004.
  • 115. A. V. Ivanov, A. N. Shalygin, V. Y. Galkin, A. V. Vedyayev, and K. N. Rozanov. Metamaterials with tunable negative refractive index fabricated from amorphous ferromagnetic microwires: Magnetostatic interaction between microwires. PIERS 2009 Mosciw Vols I and II, Proceedings, pages 1775–1778, 2009.
  • 116. N. V. Ryazantseva and V. V. Yachin. Electromagnetic wave scattering by rectangular-cell double-periodic magneto-dielectric gratings. 1998 International Conference on Mathematical Methods in EM Theory, Vols 1 and 2, pages 192–194, 1998.
  • 117. K. Y. Sirenko, Y. K. Sirenko, and N. P. Yashina. Modeling and analysis of transients in periodic gratings. ii. resonant wave scattering. Journal of the Optical Society of America A-Optics Image Science and Vision, 27(3):544–552, MAR 2010.
  • 118. Shung Wu Lee. Radiation from an infinite array of parallel-plate waveguides with thick walls. IEEE Trans. Microw. Theory Tech., 15(6):364–371, 1967.
  • 119. R. I. Primich. A semi-infinite array of parallel metallic plates of finite thickness for microwave systems. IRE Trans. Microw. Theory Tech., 4(3):156–166, 1956.
  • 120. V. Galindo and C. Wu. Numerical solutions for an infinite phased array of rectangular waveguides with thick walls. IEEE Trans. Antennas Propagat., 14(2):149–158, 1966.
  • 121. Yong Cai and C. Mias. Finite-element time-domain modelling of broadside radiation from a 2d parallel-plate waveguide antenna array. In Proc. 36th European Microwave Conf, pages 5–8, 2006.
  • 122. H. Toyama and K. Yasumoto. Electromagnetic scattering from periodic arrays of composite circular cylinders with cylindrical inclusions. In Proc. IEEE Int. Workshop Antenna Technology: Small Antennas and Novel Metamaterials IWAT 2005, pages 355–358, 2005.
  • 123. W. H. Zhu and D. A. McNamara. Electromagnetic scattering from a nonplanar periodic conducting grating, and its equivalent surface impedance. J. of Electromagn. Waves and Appl., 18(11):1485–1504, 2004.
  • 124. E. A. N. Whitehead. The theory of parallel-plate media for microwave lenses. Proceedings of the IEE -Part III: Radio and Communication Engineering, 98(52):133–140, 1951.
  • 125. V. P. Shestopalov, L. N. Litvinenko, S. A. Masalov, and V. G. Sologub. Diffraction of waves by gratings. Kharkov University Publishers, Kharkov, Ukraine, 1973.
  • 126. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher Transcendental Functions, volume 1, chapter 3, page 162. McGraw-Hill, New York, 1953.
  • 127. Y. Tasinkevych. Electromagnetic scattering by a periodic array of thickwalled parallel plate waveguides. J. Tech. Phys., 50:41–53, 2009.
  • 128. W. H. Kent and S. W. Lee. Diffraction by an infinite array of parallel strips. J. Math. Phys, 13(12):1926–1930, 1972.
  • 129. E. Bausk, E. Kolosovsky, A. Kozlov, and L. Solie. Optimization of broadband uniform beam profile interdigital transducers weighted by assignment of electrode polarities. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 49(1):1–10, 2002.
  • 130. S. V. Biryukov and V. G. Polevoi. The electrostatic problem for the saw interdigital transducers in an external electric field. i. a general solution for a limited number of electrodes. IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 43(6):1150–1159, 1996.
  • 131. Y. Tasinkevych and E. J. Danicki. Numerical efficiency of idt charge spatial spectrum evaluation methods. Proc. 2002 IEEE Ultrason. Symp., pages 297–300, 2002.
  • 132. B. P. Abbott and C. S. Hartmann. An efficient evaluation of the electrostatic fields in idts with periodic electrode sequences. In Proc. 1993 IEEE Ultrasonics Symp., pages 157–160, 1993.
  • 133. S. V. Biryukov and V. G. Polevoi. General approach to the electrostatic problem of the idt in an external electric field. In Proc. 1995 IEEE Ultrasonics Symp., volume 1, pages 325–328, 1995.
  • 134. R. C. Peach. A general approach to the electrostatic problem of the saw interdigital transducer. IEEE Trans. Sonics Ultrason., 28(2):96–104, 1981.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBE-0007-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.