PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical modelling of thin films. Stress Evolution, Degradation, Characterization

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mechaniczne modelowanie cienkich warstw
Języki publikacji
EN
Abstrakty
EN
The thesis reports the research effort aimed at the mechanical modelling of thin films. It is devoted to four particular aspects: stress development due to mechanical and thermal loadings, coating degradation due to through thickness cracking, coating delamination and, finally, mechanical characterization of thin films using non-invasive methods. The monograph consists of seven chapters. Chapter 1 is an introductory chapter, where thin films deposition methods are described. Then, failure modes observed in coatings are discussed. Since the developed modelling tools will be applied in particular to thermal barrier coatings and human skin, two final sections of the chapter introduce the reader into mechanical and material properties of TBC systems and human skin. Mathematical preliminaries is the subject of Chapter 2 of the monograph. Basics of elastic fracture mechanics of interfacial cracks are briefly presented and cohesive zone model is introduced. This model makes a basis for subsequent modelling of various types of cracks within coating systems. Chapters 3-6 report the novel part of the research and, except for the experiment described in the frst part of Chapter 4 (bending tests combined with acoustic emission technique), present an original contribution of the Author. In Chapter 3 an energy model of segmentation cracking with application to silicon oxide film is presented. Chapter 4 reports Fnite element simulation of stress development, delamination and through-thickness cracking in TBC systems. In Chapter 5 two dimensional model of frictional slip is presented and semi-analytical procedure providing delamination estimation is described. Chapter 6 presents a conceptual setup of piezoelectric sensors used for mechanical characteristic of human skin. The final Chapter 7 concludes the monograph and recapitulates the main achievements of the reported research.
PL
Cienkie warstwy znajdują zastosowanie w wielu gałęziach techniki. Odnajdujemy je w układach scalonych, czyli w każdym komputerze. Tutaj przewodzenie ładunków elektrycznych jest w dużej mierze zależne od rodzaju powierzchni kontaktowych na granicy cienkich warstw materiałów o różnych własnościach elektrycznych i mechanicznych (Freund i Suresh [69], Lu i współpracownicy [128]). Kolejnym przykładem zastosowania cienkich warstw są pokrycia elementów turbin gazowych, na przykład ich łopatki (Evans i współpracownicy [62, 63]). Izolacja, wykonana z bardzo porowatej ceramiki o małej przewodności cieplnej, odgrywa tutaj istotną rolę, chroniąc właściwy materiał łopatki przed temperaturami znacznie przewyższającymi jego temperaturę topnienia oraz zapewniając ochronę przed czynnikami korozyjnymi. Wiąże się z tym istotny aspekt ekonomiczny, zastosowanie warstw izolacji termicznej pozwala bowiem na wydłużenie całkowitego okresu pracy turbiny oraz prowadzi do zwiększenia jej wydajności. Szczególnie materiały o zmieniających się właściwościach mechanicznych i termicznych po grubości pokrycia odgrywają coraz ważniejszą rolę w tego rodzaju zastosowaniach. Należy wymienić tutaj pokrycia wielowarstwowe (po angielsku multi-layered), gdzie zmiana cech mechanicznotermicznych jest skokowa po grubości oraz te, gdzie jest ona ciągła (Pindera i współpracownicy [161, 162]). Te drugie noszą raczej niefortunną w języku polskim nazwę materiałów gradientowych (po angielsku graded materials). Cienką warstwą jest także ludzka skóra, dlatego mechanika cienkich warstw znajduje także swoje zastosowanie w tych dziedzinach techniki lub nauki, których nazwa zaczyna się przedrostkiem bio- (Białas i Guzina [26]). W szczególności odgrywa rolę w diagnostyce komórek nowotworowych (w sensie mechanicznym są one sztywniejsze od komórek zdrowych) oraz przy produkcji sztucznej skóry (Wagner i współpracownicy [209]). Czas użytkowania elementów maszyn lub konstrukcji szczególnie narażonych na ścieranie w wyniku kontaktu z otoczeniem może być znacznie zwiększony właśnie poprzez zastosowanie na nich cienkich pokryć. Należy tutaj wymienić dyski komputerowe wykorzystujące zjawisko magnetyzmu lub sztuczne implanty bioder lub kolan (Freund i Suresh [69]). Niewielka grubość cienkich warstw odgrywa istotne znaczenie w innych gałęziach techniki. Polimerowe filmy wykorzystuje się przy produkcji laminowanych szyb - łączą one ze sobą elementy szklane (Ivanov [101], Muralidhar i współpracownicy [143]). Ten sam materiał, ale dodatkowo zbrojony włóknami, wykorzystuje się w budownictwie do wzmocnienia uszkodzonych elementów konstrukcyjnych (Cottone i Giambanco [50]). Pierwszym wnioskiem jaki nasuwa się po przejrzeniu powyższej listy jest stwierdzenie, że rolą cienkich warstw nie jest przenoszenie dużych obciążeń, powiedzielibyśmy, że nie pełnią one roli nośnej. W większości przypadków tak rzeczywiście jest, spełniają one jedynie zadanie ochronne. Mimo to, w wielu sytuacjach sam sposób ich produkcji powoduje wytworzenie dużych naprężeń początkowych, które w połączeniu z tymi, które wywołuje obciążona konstrukcja, mogą prowadzić do uszkodzenia warstwy. Najczęściej spotykane rodzaje uszkodzeń to pęknięcia po grubości lub odspajanie warstwy. Ich obecność może oznaczać całkowitą bezużyteczność elementu, który warstwa ma chronić. Konstrukcja, której rozmiar w jednym kierunku jest znacznie mniejszy niż w dwóch pozostałych to w mechanice konstrukcji płyta lub powłoka. Najważniejsza różnica, która pojawia się jednak, gdy mamy na myśli cienką warstwę polega na tym, że nie możemy tutaj pominąć materiału, który znajduje się pod nią i efektu, który on wywołuje. W wielu przypadkach nie jest nawet możliwe, aby wykonać eksperyment z samą cienką warstwą, a trudności związane są najczęściej z jej znikomą grubością. Chcąc modelować mechaniczne zachowanie się warstwy, wykorzystujemy pojęcie powierzchni kontaktowej, to jest powierzchni łączącej warstwę z podłożem. Dla tego obszaru definiujemy cechy mechaniczne, które oddają specyficzny charakter połączenia dwóch różnych materiałów warstwy i podłoża. Celem rozprawy jest opracowanie różnych metod mechanicznej analizy cienkich warstw ze szczególnym uwzględnieniem opisu stanu naprężenia, wywołanego nim rozwoju uszkodzeń (pękanie po grubości warstwy oraz jej odspajanie) oraz identyfikacji cech mechanicznych warstwy. Przyjęte modelowanie opiera się o mechanikę kontynualną ciała stałego i nie uwzględnia efektów wywołanych explicite analizą ziaren, dyslokacji lub wtrąceń obecnych w cienkim filmie. Typowy rząd grubości warstw omawianych w pracy to 0.5 žm - 2 mm. Jedynie proces pękania segmentacyjnego opisany w Rozdziale 3 dotyczy warstw znacznie cieńszych, o grubości 30-660 nm. Oryginalne aspekty prezentowanej rozprawy to: - zastosowanie energetycznego modelu pękania segmentacyjnego do opisu zjawisk zachodzących w warstwie tlenku krzemu na podłożu polimerowym; - wyjaśnienie wpływu naprężeń wstępnych na proces pękania segmentacyjnego w tym przypadku; - ilościowa analiza procesu rozwoju spękań po grubości warstwy izolacji termicznej; - wykazanie istotności wielkości kroku obciążenia w analizie metodą elementów skończonych procesu rozwoju dużej liczby nie połączonych ze sobą spękań; sformułowanie wskazówek praktycznych zezwalających na uniknięcie problemów ze zbieżnością obliczeń; - analiza głównych czynników decydujących o rozwoju stanu naprężenia w warstwach izolacji termicznej i podanie hipotetycznego scenariusza opisującego proces delaminacji tych warstw; - sformułowanie metody pozwalającej na pół-analityczne oszacowanie procesu dwuwymiarowego poślizgu ciernego warstwy na sztywnym podłożu; - wyprowadzenie prostych wzorów opisujących kształt strefy zdelaminowanej oraz proces delaminacji sztywnej warstwy ze sztywnego podłoża; - koncepcyjne sformułowanie zasad działania czujnika piezoelektrycznego pozwalającego na pomiar sprzężonych modułów sprężystych wielowarstwowego materiału; - sformułowanie praktycznych wskazówek służących zwiększeniu efektywności działania zaproponowanego czujnika.
Rocznik
Tom
Strony
3--238
Opis fizyczny
Bibliogr. 233 poz.
Twórcy
autor
Bibliografia
  • 1. J. D. Achenbach. Wave propagation in elastic solids, volume 16 of Applied Mathematics and Mechanics. North-Holland Publishing Company, Amsterdam, 1973.
  • 2. P. G. Agache, C. Monneur, J. L. Leveque, and J. Rigal. Mechanical properties and Young’s modulus of human skin in vivo. Archives of Dermatological Research, 269(3):221–232, 1980.
  • 3. T. Agner. Ultrasound a-mode measurement of skin-thickness. In J. Serup and G. B. E. Jemec, editors, Handbook of non-invasive methods and the skin, pages 289–292. CRC Press, Boca Raton FL, 1995.
  • 4. D. Agrawal and R. Raj. Measurement of the ultimate shear strength of a metalceramic interface. Acta Metallurgica, 37(4):1265–1270, 1989.
  • 5. D. C. Agrawal and R. Raj. Ultimate shear strengths of copper-silica and nickelsilica interfaces. Materials Science and Engineering: A, 126(1-2):125–131, 1990.
  • 6. M. Ahrens, R. Vaßen, D. St¨over, and S. Lampenscherf. Sintering and creep processes in plasma-sprayed thermal barrier coatings. Journal of Thermal Spray Technology, 13(3):432–442, 2004.
  • 7. B. E. Alaca, M. T. A. Saif, and H. Sehitoglu. On the interface debond at the edge of a thin film on a thick substrate. Acta Materialia, 50(5):1197–1209, 2002.
  • 8. C. Alexander and T. Cook. Accounting for the natural tension in the mechanical testing of human skin. The Journal of Investigative Dermatology, 69(3):310–314, 1977.
  • 9. T. L. Anderson. Fracture mechanics. Fundamentals and applications. Taylor & Francis Group, USA, 2005.
  • 10. M. Andritschky, P. Alpuim, D. St¨over, and C. Funke. Study of the mechanics of the delamination of ceramic functional coatings. Materials Science and Engineering: A, 271(1-2):62–69, 1999.
  • 11. R. Anton. Untersuchungen zu den Versagensmechanismen von W¨armed¨ammschicht-Systemen im Temperaturbereich von 900 C bis 1050 C bei zyklischer Temperaturbelastung. Dissertation, RWTH Aachen, Germany, 2002.
  • 12. B. Audoly and A. Boudaoud. Buckling of a thin film bound to a compliant substrate – Part I: Formulation, linear stability of cylindrical patterns, secondary bifurcations. Journal of the Mechanics and Physics of Solids, 56(7):2401–2421, 2008.
  • 13. B. Audoly and A. Boudaoud. Buckling of a thin film bound to a compliant substrate – Part II: A global scenario for the formation of herringbone pattern. Journal of the Mechanics and Physics of Solids, 56(7):2422–2443, 2008.
  • 14. B. Audoly and A. Boudaoud. Buckling of a thin film bound to a compliant substrate – Part III: Herringbone solutions at large buckling parameter. Journal of the Mechanics and Physics of Solids, 56(7):2422–2443, 2008.
  • 15. J. Aveston and A. Kelly. Theory of multiple fracture of fibrous composites. Journal of Materials Science, 8(3):352–362, 1973.
  • 16. D. Bader and P. Bowker. Mechanical characteristics of skin and underlying tissues in vivo. Biomaterials, 4(4):305–308, 1983.
  • 17. J. Barbanel. Time dependent mechanical properties of skin. Dissertation, University of Strathclyde, Glasgow, UK, 1979.
  • 18. A. Barel, W. Courage, and P. Clarys. Suction method for measurement of skin mechanical properties: the cutometer. In J. Serup and G. B. E. Jemec, editors, Handbook of non-invasive methods and the skin. CRC Press, Boca Raton, 1995.
  • 19. G. Barenblatt. The mathematical theory of equilibrium cracks in brittle fracture, volume 7 of Advances in Applied Mechanics. Academic Press, New York, 1962.
  • 20. G. Barenblatt. Scaling. Cambridge University Press, UK, 2003.
  • 21. T. Beck, M. Białas, P. Bednarz, L. Singheiser, K. Bobzin, N. Bagcivan, D. Parkot, T. Kashko, J. Petković, B. Hallstedt, S. Nemna, and J. M. Schneider. Modeling of coating process, phase changes, and damage of plasma sprayed thermal barrier coatings on ni-base superalloys. Advanced Engineering Materials, 12(3):110–126, 2010.
  • 22. P. Bednarz. Finite element simulation of stress evolution in thermal barrier coating systems, volume 60 of Schriften des Forschungszentrum J¨ulich, Reihe Energietechnik. Forschungszentrum J¨ulich, Germany, 2007.
  • 23. M. Białas. Modelowanie rozwoju uszkodzeń w warstwach kontaktowych materiałów. Dissertation, Institute of Fundamental Technological Research, Warsaw, 2003.
  • 24. M. Białas. Finite element analysis of stress distribution in thermal barrier coatings. Surface and Coatings Technology, 202(24):6002–6010, 2008.
  • 25. M. Białas. Progressive frictional delamination of an infinite elastic film on a rigid substrate due to in-plane point loading. Journal of Elasticity, Accepted. DOI: 10.1007/s10659-011-9360-3.
  • 26. M. Białas and B. B. Guzina. On the viscoelastic characterization of thin tissues via surface-wave sensing. International Journal of Solids and Structures, 48(14-15):2209–2217, 2011.
  • 27. M. Białas, P. Majerus, R. Herzog, and Z. Mróz. Numerical simulation of segmentation cracking in thermal barrier coatings by means of cohesive zone elements. Materials Science and Engineering: A, 412(1-2):241–251, 2005.
  • 28. M. Białas and Z. Mróz. Modelling of progressive interface failure under combined normal compression and shear stress. International Journal of Solids and Structures, 42(15):4436–4467, 2005.
  • 29. M. Białas and Z. Mróz. Crack patterns in thin layers under temperature loading. Part I: Monotonic loading. Engineering Fracture Mechanics, 73(7):917–938, 2006.
  • 30. M. Białas and Z. Mróz. Crack patterns in thin layers under temperature loading. Part II: Cyclic loading. Engineering Fracture Mechanics, 73(7):939–952, 2006.
  • 31. M. Białas and Z. Mróz. An energy model of segmentation cracking of thin films. Mechanics of Materials, 39(9):845–864, 2007.
  • 32. N. Bowden, S. Brittain, A. Evans, J. W. Hutchinson, and G. M. Whitesides. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature, 393(6681):146–149, 1998.
  • 33. D. Breid and A. J. Crosby. Surface wrinkling behavior of finite circular plates. Soft Matter, 5(2):425–431, 2009.
  • 34. W. J. Brindley and J. D. Whittenberger. Stress relaxation of low pressure plasmasprayed nicraly alloys. Materials Science and Engineering: A, 163(1):33–41, 1993.
  • 35. E. P. Busso, J. Lin, and S. Sakurai. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part II: Life prediction model. Acta Materialia, 49(9):1529–1536, 2001.
  • 36. E. P. Busso, J. Lin, S. Sakurai, and M. Nakayama. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part I: Model formulation. Acta Materialia, 49(9):1515–1528, 2001.
  • 37. M. Caliez, J.-L. Chaboche, F. Feyel, and S. Kruch. Numerical simulation of EBPVD thermal barrier coatings spallation. Acta Materialia, 51(4):1133–1141, 2003.
  • 38. M. Caliez, F. Feyel, S. Kruch, and J.-L. Chaboche. Oxidation induced stress fields in an EB-PVD thermal barrier coating. Surface and Coatings Technology, 157(2-3):103–110, 2002.
  • 39. G. T. Camacho and M. Ortiz. Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures, 33(20-22):2899–2938, 1996.
  • 40. P. P. Camanho and C. G. D´avila. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. Report TM-2002-211737, NASA, Langley Research Center, Hampton, Virginia, June 2002.
  • 41. R. Capozucca. Experimental FRP/SRP-historic masonry delamination. Composite Structures, 92(4):891–903, 2010.
  • 42. S. Catheline, J.-L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram, and J. Culioli. Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: An inverse problem approach. The Journal of the Acoustical Society of America, 116(6):3734–3741, 2004.
  • 43. G. C. Chang, W. Phucharoen, and R. A. Miller. Behavior of thermal barrier coatings for advanced gas turbine blades. Surface and Coatings Technology, 30(1):13–28, 1987.
  • 44. B. F. Chen, J. Hwang, I. F. Chen, G. P. Yu, and J.-H. Huang. A tensile-filmcracking model for evaluating interfacial shear strength of elastic film on ductile substrate. Surface and Coatings Technology, 126(2-3):91–95, 2000.
  • 45. X. Chen and J. W. Hutchinson. Herringbone buckling patterns of compressed thin films on compliant substrates. Journal of Applied Mechanics, 71(5):597–603, 2004.
  • 46. S. Chi and Y.-L. Chung. Cracking in coating-substrate composites with multilayered and FGM coatings. Engineering Fracture Mechanics, 70(10):1227–1243, 2003.
  • 47. Y.-L. Chung and C.-F. Pon. Boundary element analysis of cracked film-substrate media. International Journal of Solids and Structures, 38(1):75–90, 2001.
  • 48. D. Clemens, W. J. Quadakkers, F. Schubert, and H. Nickel. Einfluss von Si and Ti auf das Oxidationsverhalten von McrAlY-Legierungen. Report J¨ul-3444, Forschungszentrum Jülich, 1997.
  • 49. T. Cook, H. Alexander, and M. Cohen. Experimental method for determining the 2-dimensional mechanical properties of living human skin. Medical and Biological Engineering and Computing, 15(4):381–390, 1977.
  • 50. A. Cottone and G. Giambanco. Minimum bond length and size effects in FRPsubstrate bonded joints. Engineering Fracture Mechanics, 76(13):1957–1976, 2009.
  • 51. H. L. Cox. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 3(3):72–78, 1952.
  • 52. J. T. de Masi, K. D. Sheffler, and M. Oritz. Thermal barrier coating live prediction developement, Phase I. Contractor Report 182230, NASA, 1989.
  • 53. Deassault Syst`emes. ABAQUS version 6.7, User documentation, 2007.
  • 54. P. R. Dhar and J. W. Zu. Design of a resonator device for in vivo measurement of regional tissue viscoelasticity. Sensors and Actuators A: Physical, 133(1):45–54, 2007.
  • 55. S. Diridollou, M. Berson, V. Vabre, D. Black, B. Karlsson, F. Auriol, J. Gregoire, C. Yvon, L. Vaillant, Y. Gall, and F. Patat. An in vivo method for measuring the mechanical properties of the skin using ultrasound. Ultrasound in Medicine & Biology, 24(2):215–224, 1998.
  • 56. D. M. Dobkin and M. K. Zuraw. Principles of chemical vapor. Kluwer Academic Publishers, 2003.
  • 57. G. Döpper, E. Lugscheider, K. Bobezin, and A. Etzkorn. Thermomechanical behaviour of EB-PVD and thermal sprayed thermal barrier coatings. In A. Strang, W. M. Banks, R. D. Conroy, G. M. McColvin, J. C. Neal, and S. Simpson, editors, Proceedings of the Fifth International Charles Parsons Turbine Conference, volume 736, pages 733–740, 2000.
  • 58. D. S. Dugdale. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2):100–104, 1960.
  • 59. J. Dundurs. Effect of elastic constants on stress in a composite under plane deformation. Journal of Composite Materials, 1(3):310–322, 1967.
  • 60. H. Echsler. Oxidationsverhalten und mechanische Eigenschaften von Wärmedämmschichten und deren Einfluss auf eine Lebensdauervorhersage. Dissertation, RWTH Aachen, Germany, 2003.
  • 61. C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J. L´evˆeque, and P. Agache. Age-related mechanical properties of human skin: An in vivo study. Journal of Investigative Dermatology, 93(3), 1989.
  • 62. A. G. Evans, M. Y. He, and J. W. Hutchinson. Mechanics-based scaling laws forthe durability of thermal barrier coatings. Progress in Materials Science, 46(3-4):249–271, 2001.
  • 63. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit. Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science, 46(5):505–553, 2001.
  • 64. M. Fatemi and J. F. Greenleaf. Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Physics in Medicine and Biology, 45(6):1449–1464, 2000.
  • 65. W. N. Findley, J. S. Lai, and K. Onaran. Creep and relaxation of nonlinear viscoelastic materials. Dover, New York, 1989.
  • 66. G. Fleury and F. Schubert. Anisotrope Stoffgesetze f¨ur das viskoplasticheVerformungsverhalten der einkristallinen Superlegierung CMSX-4. Dissertation, RWTH Aachen, Germany, 1997.
  • 67. J. Fraden. Handbook of modern sensors: physics, designs, and applications. Springer, 2004.
  • 68. A. M. Freborg, B. Ferguson, W. Brindley, and G. Petrus. Modeling oxidation induced stresses in thermal barrier coatings. Materials Science and Engineering: A, 245(2):182–190, 1998.
  • 69. L. B. Freund and S. Suresh. Thin film materials: stress, defect formation, and surface evolution. Cambridge University Press, 2003.
  • 70. T. Futatsugi, S. Ogawa, M. Takemoto, M. aki Yanaka, and Y. Tsukahara. Integrity evaluation of SiOx film on polyethylene terapthalate by AE characterization and laser microscopy. NDT & E International, 29(5):307–316, 1996.
  • 71. V. Ganji, N. Gucunski, and S. Nazarian. Automated inversion procedure for spectral analysis of surface waves. Journal of Geotechnical & Geoenvironmental Engineering, 124(8):757–770, 1998.
  • 72. F. Gastaldi and D. Kinderlehrer. The partially supported elastic beam. Journal of Elasticity, 13(1):71–82, 1983.
  • 73. M. Geerligs. In vitro mechanical characterization of human skin layers: stratum corneum, epidermis and hypodermis. Dissertation, Technische Universiteit Eindhoven, Holland, 2006.
  • 74. M. Gell, E. Jordan, K. Vaidyanathan, K. McCarron, B. Barber, Y.-H. Sohn, and V. K. Tolpygo. Bond strength, bond stress and spallation mechanisms of thermal barrier coatings. Surface and Coatings Technology, 120-121:53–60, 1999.
  • 75. G. Gioia and M. Ortiz. Delamination of compressed thin films. volume 33 of Advances in Applied Mechanics, pages 119–192. Elsevier, 1997.
  • 76. M. Gniadecka and J. Serup. Suction chamber method for measurement of skin mechanical properties: the dermaflex. In J. Serup, B. E. Jemec, and G. L. Grove, editors, Handbook of non-invasive methods and the skin, chapter 66, pages 579–582. CRC/Taylor & Francis, Boca Raton FL, 2 edition, 2006.
  • 77. R. Grahame. A method for measuring human skin elasticity in vivo with observations on the effects of age, sex and pregnancy. Clinical Science, 39(2):223–229, 1970.
  • 78. E. Grande, M. Imbimbo, and E. Sacco. Bond behaviour of CFRP laminates glued on clay bricks: Experimental and numerical study. Composites Part B: Engineering, 42(2):330–340, 2011.
  • 79. B. Gudmundsson and B. E. Jacobson. Structure formation and interdiffusion in vacuum plasma sprayed CoNiCrAlY coatings on IN738LC. Materials Science and Engineering, 100:207–217, 1988.
  • 80. H. Guo, R. Vaßen, and D. St¨over. Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings. Surface and Coatings Technology, 192(1):48–56, 2005.
  • 81. B. B. Guzina and A. Lu. Coupled waveform analysis in dynamic characterization of lossy solids. Journal of Engineering Mechanics, 128(4):392–402, 2002.
  • 82. B. B. Guzina and A. I. Madyarov. On the spectral analysis of Love waves. Bulletin of the Seismological Society of America, 95(3):1150–1169, 2005.
  • 83. B. B. Guzina, K. Tuleubekov, D. Liu, and E. S. Ebbini. Viscoelastic characterization of thin tissues using acoustic radiation force and model-based inversion. Physics in Medicine and Biology, 54(1):4089–4112, 2009.
  • 84. U. A. Handge, Y. Leterrier, G. Rochat, I. M. Sokolov, and A. Blumen. Two scaling domains in multiple cracking phenomena. Physical Review E, 62(6):7807–7810, 2000.
  • 85. U. A. Handge, I. M. Sokolov, and A. Blumen. Disorder and plasticity in the fragmentation of coatings. Physical Review E, 64(1):106–109, 2001.
  • 86. J. A. Haynes, E. D. Rigney, M. K. Ferber, and W. D. Porter. Oxidation and degradation of a plasma-sprayed thermal barrier coating system. Surface and Coatings Technology, 86-87(1):102–108, 1996.
  • 87. M.-Y. He, A. G. Evans, and J. W. Hutchinson. The ratcheting of compressed thermally grown thin films on ductile substrates. Acta Materialia, 48(10):2593–2601, 2000.
  • 88. M.-Y. He and J. W. Hutchinson. Kinking of a crack out of an interface. Journal of Applied Mechanics, 56(2):270–278, 1989.
  • 89. S. Heckmann, R. Herzog, R. Steinbrech, F. Schubert, and L.Singheiser. Viscoplastic properties of separated thermal barrier coatings under compression loading. In Proceedings of the 7th Liege Conference 2002, 30 September - 2 October 2002, Li´ege, Belgium, volume 21 of Materials for Advanced Power Engineering, pages 561–568, 2002.
  • 90. J. S. Heisey, K. Stokoe II, and A. Meyer. Moduli of pavement systems from spectral analysis of surface waves. Transportation Research Record, 852:22–31, 1982.
  • 91. S. S. Herman, H. and R. McCune. Thermal spray: current status and future trends. MRS Bulletin, 25(7):17–25, 2000.
  • 92. B. Holt, A. Tripathi, and J. Morgan. Viscoelastic response of human skin to low magnitude physiologically relevant shear. Journal of Biomechanics, 41(12):2689–2695, 2008.
  • 93. C.-H. Hsueh. Analyses of multiple film cracking in film/substrate systems. Journal of the American Ceramic Society, 84(12):2955–2961, 2001.
  • 94. C.-H. Hsueh and E. Fuller Jr. Analytical modeling of oxide thickness effects on residual stresses in thermal barrier coatings. Scripta Materialia, 42(8):781–787, 2000.
  • 95. C.-H. Hsueh and E. R. Fuller Jr. Residual stresses in thermal barrier coatings: effects of interface asperity curvature/height and oxide thickness. Materials Science and Engineering: A, 283(1-2):46–55, 2000.
  • 96. C.-H. Hsueh and M. Yanaka. Multiple film cracking in film/substrate systems with residual stresses and unidirectional loading. Journal of Materials Science, 38(8):1809–1817, 2003.
  • 97. M. S. Hu and A. G. Evans. The cracking and decohesion of thin films on ductile substrates. Acta Metallurgica, 37(3):917–925, 1989.
  • 98. W. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson, and G. M. Whitesides. Ordering of spontaneously formed buckles on planar surfaces. Langmuir, 16(7):3497–3501, 2000.
  • 99. J. W. Hutchinson, M. Y. He, and A. G. Evans. The influence of imperfections on the nucleation and propagation of buckling driven delaminations. Journal of the Mechanics and Physics of Solids, 48(4):709–734, 2000.
  • 100. J. W. Hutchinson and Z. Suo. Mixed mode cracking in layered materials. volume 29 of Advances in Applied Mechanics, pages 63–191. Elsevier, 1991.
  • 101. I. V. Ivanov. Analysis, modelling, and optimization of laminated glasses as plane beam. International Journal of Solids and Structures, 43(22-23):6887–6907, 2006.
  • 102. W. D. James, T. Berger, and D. Elston. Andrews’ diseases of the skin: clinical dermatology. Elsevier-Saunders, 2006.
  • 103. M. Jinnestrand and S. Sjöström. Investigation by 3D FE simulations of delamination crack initiation in TBC caused by alumina growth. Surface and Coatings Technology, 135(2-3):188–195, 2001.
  • 104. S. Kärki, J. Lekkala, H. Kuokkanen, and J. Halttunen. Development of a piezoelectric polymer film sensor for plantar normal and shear stress measurements. Sensors and Actuators A: Physical, 154(1):57–64, 2009.
  • 105. A. M. Karlsson and A. Evans. A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems. Acta Materialia, 49(10):1793–1804, 2001.
  • 106. A. M. Karlsson, J. W. Hutchinson, and A. G. Evans. A fundamental model of cyclic instabilities in thermal barrier systems. Journal of the Mechanics and Physics of Solids, 50(8):1565–1589, 2002.
  • 107. A. Kelly. Strong Solids. Clanderon Press, Oxford, 1966.
  • 108. A. Kelly and W. R. Tyson. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. Journal of the Mechanics and Physics of Solids, 13(6):329–350, 1965.
  • 109. S.-R. Kim and J. A. Nairn. Fracture mechanics analysis of coating/substrate systems. Part I: Analysis of tensile and bending experiments. Engineering Fracture Mechanics, 65(5):573–593, 2000
  • 110. S.-R. Kim and J. A. Nairn. Fracture mechanics analysis of coating/substrate systems. Part II: Experiments in bending. Engineering Fracture Mechanics, 65(5):595–607, 2000.
  • 111. S. J. Kirkpatrick, D. D. Duncan, and L. Fang. Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin. Journal of Biomedical Optics, 9(6):1311–1319, 2004.
  • 112. S. C. Ko, Y. C. Kim, S. S. Lee, S. H. Choi, and S. R. Kim. Micromachined piezoelectric membrane acoustic device. Sensors and Actuators A: Physical, 103(1-2):130–134, 2003.
  • 113. K. Kokini and Y. R. Takeuchi. Multiple surface thermal fracture of graded ceramic coatings. Journal of Thermal Stresses, 21(7):715–725, 1998.
  • 114. J. Korelc. Automatic generation of finite-element code by simultaneous optimization of expressions. Theoretical Computer Science, 187(1-2):231–248, 1997.
  • 115. J. Korelc. Multi-language and multi-environment generation of nonlinear finite element codes. Engineering with Computers, 18(4):312–327, 2002.
  • 116. J. Korelc. AceFEM. Mathematica finite element enviroment, 2009. Available at http://www.fgg.uni-lj.si/Symech/.
  • 117. S. A. Kruse, J. A. Smith, A. J. Lawrence, M. A. Dresner, A. Manduca, J. F. Greenleaf, and R. L. Ehman. Tissue characterization using magnetic resonance elastography: preliminary results. Physics in Medicine and Biology, 45(6):1579–1590, 2000.
  • 118. C. G. Lai and G. J. Rix. Solution of the Rayleigh eigenproblem in viscoelastic media. Bulletin of the Seismological Society of America, 92(6):2297–2309, 2002.
  • 119. K. Langer. Zur Anatomie und Physiologie der haut. i. ¨uber der Spaltbarkeit der Cutis. Sitzungsbericht der Akademie der Wissenschaften in Wien, 44(19–46), 1861.
  • 120. N. Laws and G. J. Dvorak. Progressive transverse cracking in composite laminates. Journal of Composite Materials, 22(10):900–916, 1988.
  • 121. C.-C. Lee, Q. Guo, G. Cao, and I. Shen. Effect of electrode size and silicon residue on piezoelectric thin-film membrane actuators. Sensors and Actuators A: Physical, 147(1):279–285, 2008.
  • 122. C. K. Lee. Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships. The Journal of the Acoustical Society of America, 87(3):1144–1158, 1990.
  • 123. W. S. Lee and S. S. Lee. Piezoelectric microphone built on circular diaphragm. Sensors and Actuators A: Physical, 144(2):367–373, 2008.
  • 124. Y. Leterrier, J. Andersons, Y. Pitton, and J.-A. E. Månson. Adhesion of silicon oxide layers on poly(ethylene terephthalate). II: Effect of coating thickness on adhesive and cohesive strengths. Journal of Polymer Science Part B: Polymer Physics, 35(9):1463–1472, 1997.
  • 125. Y. Leterrier, L. Boogh, J. Andersons, and J.-A. E. Månson. Adhesion of silicon oxide layers on poly(ethylene terephthalate). I: Effect of substrate properties on coating’s fragmentation process. Journal of Polymer Science Part B: Polymer Physics, 35(9):1449–1461, 1997.
  • 126. D. Liu and E. Ebbini. Viscoelastic property measurement in thin tissue constructs using ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 55(2):368–383, 2008.
  • 127. O. Lokshin and Y. Lanir. Micro and macro rheology of planar tissues. Biomaterials, 30(17):3118–3127, 2009.
  • 128. T. J. Lu, A. G. Evans, and J. W. Hutchinson. The effects of material properties on heat dissipation in high power electronics. Journal of Electronic Packaging, 120(3):280–289, 1998.
  • 129. X. Q. Ma, S. Cho, and M. Takemoto. Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests. Surface and Coatings Technology, 139(1):55–62, 2001.
  • 130. J. E. Mahan. Physical vapor deposition of thin films. John Wiley & Sons, New York, 2000.
  • 131. P. Majerus. Report on thermal barrier coatings. Technical report, Center of Excellence AMAS, Warsaw, 2002.
  • 132. P. Majerus. Neue Verfahren zur Analyse des Verformungs- und Schädigungsverhaltens von MCrAlY-Schichten im Wärmedämmschichtsystem, volume 34 of Schriften des Forschungszentrum Jülich, Reihe Energietechnik. Forschungszentrum Jülich, Germany, 2004.
  • 133. A. K. Mal. Guided waves in layered solids with interface zones. International Journal of Engineering Science, 26(8):873–881, 1988.
  • 134. B. M. Malyshev and R. L. Salganik. The strength of adhesive joints using the theory of cracks. International Journal of Fracture, 1(2):114–128, 1965.
  • 135. J. Manschot. The mechanical properties of human skin in vivo. Dissertation, Catholic University of Nijmegen, Holland, 1985.
  • 136. M. Martena, D. Botto, P. Fino, S. Sabbadini, M. M. Gola, and C. Badini. Modelling of TBC system failure: Stress distribution as a function of tgo thickness and thermal expansion mismatch. Engineering Failure Analysis, 13(3):409–426, 2006.
  • 137. A. P. McGuigan, G. A. D. Briggs, V. Burlakov, M. Yanaka, and Y. Tsukahara. An elastic-plastic shear lag model for fracture of layered coatings. Thin Solid Films, 424(2):219–223, 2003.
  • 138. J.-M. Miao and C.-Y. Wu. Numerical approach to hole shape effect on film cooling effectiveness over flat plate including internal impingement cooling chamber. International Journal of Heat and Mass Transfer, 49(5-6):919–938, 2006.
  • 139. P. Michlik and C. Berndt. Image-based extended finite element modeling of thermal barrier coatings. Surface and Coatings Technology, 201(6):2369–2380, 2006.
  • 140. R. A. Miller and C. E. Lowell. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures. Thin Solid Films, 95(3):265–273, 1982.
  • 141. S. Moriya, Y. Kuroda, M. Sato, M. Tadano, A. Moro, and M. Nino. Research on the application of PSZ/Ni FGM thermal barrier coating to the combustion chamber (Damage conditions of TBC and its mechanism). Materials Science Forum, 308-311:410–415, 1999.
  • 142. Z. Mróz and M. Białas. A simplified analysis of interface failure under compressive normal stress and monotonic or cyclic shear loading. International Journal for Numerical and Analytical Methods in Geomechanics, 29(4):337–368, 2005.
  • 143. S. Muralidhar, A. Jagota, S. J. Bennison, and S. Saigal. Mechanical behavior in tension of cracked glass bridged by an elastomeric ligament. Acta Materialia, 48(18-19):4577–4588, 2000.
  • 144. J. A. Nairn. The strain energy release rate of composite microcracking: a variational approach. Journal of Composite Materials, 23(11):1106–1129, 1989.
  • 145. J. A. Nairn and K. Sung-Ryong. A fracture mechanics analysis of multiple cracking in coatings. Engineering Fracture Mechanics, 42(1):195–208, 1992.
  • 146. K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey. On the feasibility of remote palpation using acoustic radiation force. The Journal of the Acoustical Society of America, 110(1):625–634, 2001.
  • 147. J. Nocedal and S. J. Wright. Numerical optimization. Springer, New York, 1999.
  • 148. G. Odland. Structure of the skin. In L. A. Goldsmith, editor, Physiology, biochemistry and molecular biology of the skin. Oxford University Press, 1991.
  • 149. M. Ohring. The materials science of thin films. Academic Press, San Diego, 1992.
  • 150. J. Ophir, I. C´espedes, H. Ponnekanti, Y. Yazdi, and X. Li. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging, 13(2):111–134, 1991.
  • 151. N. S. Ottosen and M. Ristinmaa. The mechanics of constitutive modeling. Elsevier, 2005.
  • 152. D. Ouis. Combination of a standard viscoelastic model and fractional derivate calculus to the characterization of polymers. Materials Research Innovations, 7(1):42–46, 2003.
  • 153. R. Y. S. Pak and B. B. Guzina. Three-dimensional Green’s functions for a multilayered half-space in displacement potentials. Journal of Engineering Mechanics, 128(4):449–461, 2002.
  • 154. A. C. Palmer and J. R. Rice. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proceedings of the Royal Society of London A, 332(1591):527–548, 1973.
  • 155. Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, and R. Engelhardt. Optical coherencegated imaging of biological tissues. IEEE Journal of Selected Topics in Quantum Electronics, 2(4):1029–1034, 1996.
  • 156. A. Pandolfi, P. R. Guduru, M. Ortiz, and A. J. Rosakis. Three dimensional cohesive-element analysis and experiments of dynamic fracture in C300 steel. International Journal of Solids and Structures, 37(27):3733–3760, 2000.
  • 157. C. B. Park, R. D. Miller, and J. Xia. Multichannel analysis of surface waves (MASW). Geophysics, 64(3):800–808, 1999.
  • 158. C. B. Park, R. D. Miller, J. Xia, and J. Ivanov. Multichannel analysis of surface waves (MASW)—active and passive methods. The Leading Edge, 26(1):60–64, 2007.
  • 159. A. P. Parker. Stability of arrays of multiple edge cracks. Engineering Fracture Mechanics, 62(6):577–591, 1999.
  • 160. P. N. Patel, C. K. Smith, and C. W. Patrick. Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue. Journal of Biomedical Materials Research Part A, 73A(3):313–319, 2005.
  • 161. M.-J. Pindera, J. Aboudi, and S. M. Arnold. The effect of interface roughness and oxide film thickness on the inelastic response of thermal barrier coatings to thermal cycling. Materials Science and Engineering: A, 284(1-2):158–175, 2000.
  • 162. M.-J. Pindera, J. Aboudi, and S. M. Arnold. Analysis of spallation mechanism in thermal barrier coatings with graded bond coats using the higher-order theory for FGMs. Engineering Fracture Mechanics, 69(14-16):1587–1606, 2002.
  • 163. D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta. Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Physics in Medicine and Biology, 45(6):1591–1610, 2000.
  • 164. A. Preumont. Mechatronics: dynamics of electromechanical and piezoelectrical systems. Springer, Dordrecht, 2006.
  • 165. W. J. Quadakkers, A. K. Tyagi, D. Clemens, R. Anton, and L. Singheiser. The significance of bond coat oxidation for the life of TBC coatings. In J. M. Hampikian and N. B. Dahorte, editors, Proceedings of the Symposium on High Temperature Coatings III, TMS Annual Meeting, San Diego, CA, USA, 28 Feb.-4 Mar. 1999, volume 3 of Elevated temperature coatings: Science and technology, pages 119–130, 1999.
  • 166. M. Rajadhyaksha and J. Zavislan. Confocal laser microscope images tissue in vivo. Laser Focus World, 3(2):119–128, 1997.
  • 167. S. Rangaraj and K. Kokini. Estimating the fracture resistance of functionally graded thermal barrier coatings from thermal shock tests. Surface and Coatings Technology, 173(2-3):201–212, 2003.
  • 168. S. Rangaraj and K. Kokini. Interface thermal fracture in functionally graded zirconia-mullite-bond coat alloy thermal barrier coatings. Acta Materialia, 51(1):251–267, 2003.
  • 169. S. Rangaraj and K. Kokini. A study of thermal fracture in functionally graded thermal barrier coatings using a cohesive zone model. Journal of Engineering Materials and Technology, 126(1):103–115, 2004.
  • 170. J. R. Rice. Elastic fracture mechanics concepts for interfacial cracks. Journal of Applied Mechanics, 55(1):98–103, 1988.
  • 171. D. Rigney, R. Viguie, D. Wortman, and D. Skelly. PVD thermal barrier coating applications and process development for aircraft engines. Journal of Thermal Spray Technology, 6(2):167–175, 1997.
  • 172. J. C. J. Schellekens and R. de Borst. On the numerical integration of interface elements. International Journal for Numerical Methods in Engineering, 36(1):43–66, 1993.
  • 173. U. T. Schmidt, O. Vöhringer, and D. Löhe. The creep damage behavior of the plasma-sprayed thermal barrier coating system NiCr22Co12Mo9-NiCoCrAlYZrO2/7%Y2O3. Journal of Engineering for Gas Turbines and Power, 121(4):678–682, 1999.
  • 174. H. L. Schreyer and A. Peffer. Fiber pullout based on a one-dimensional model of decohesion. Mechanics of Materials, 32(12):821–836, 2000.
  • 175. F. Schubert, G. Fleuri, and T. Steinhaus. Modelling of the mechanical behavior of the single-crystal alloy CMSX-4 during thermomechanical loading. Modelling and Simulation in Materials Science and Engineering, 8(6):947–957, 2000.
  • 176. U. Schulz, M. Menzebach, C. Leyens, and Y. Yang. Influence of substrate material on oxidation behavior and cyclic lifetime of EB-PVD TBC systems. Surface and Coatings Technology, 146-147(0):117–123, 2001.
  • 177. G. W. Schulze and F. Erdogan. Periodic cracking of elastic coatings. International Journal of Solids and Structures, 35(28-29):3615–3634, 1998.
  • 178. D. Schwingel, R. Taylor, T. Haubold, J. Wigren, and C. Gualco. Mechanical and thermophysical properties of thick PYSZ thermal barrier coatings: correlation with microstructure and spraying parameters. Surface and Coatings Technology, 108-109(0):99–106, 1998.
  • 179. A. Selvadurai and K. Willner. Surface-stiffened elastic halfspace under the action of a horizontally directed Mindlin force. International Journal of Mechanical Sciences, 48(10):1072–1079, 2006.
  • 180. A. P. S. Selvadurai, N. Kringos, and A. Scarpas. Bond stress development at a surface coating-substrate interface due to the action of a nucleus of thermo-elastic strain. Surface and Coatings Technology, 202(9):1704–1711, 2008.
  • 181. J. Serup, J. Keiding, A. Fullerton, M. Gniadecka, and R. Gniadecki. Highfrequency ultrasound examination of the skin: Introduction and guide. In J. Serup, B. E. Jemec, and G. L. Grove, editors, Handbook of non-invasive methods and the skin, chapter 56, pages 473–492. CRC/Taylor & Francis, Boca Raton FL, 2 edition, 2006.
  • 182. K. Sfar, J. Aktaa, and D. Munz. Numerical investigation of residual stress fields and crack behavior in TBC systems. Materials Science and Engineering: A, 333(1-2):351–360, 2002.
  • 183. C. Sheppard and D. Shotton. Confocal laser scanning microscopy. Microscopy handbooks. BIOS Scientific, 1997.
  • 184. F.-S. Shieu, R. Raj, and S. Sass. Control of the mechanical properties of metalceramic interfaces through interfacial reactions. Acta Metallurgica et Materialia, 38(11):2215–2224, 1990.
  • 185. N. Sridhar, D. J. Srolovitz, and Z. Suo. Kinetics of buckling of a compressed film on a viscous substrate. Applied Physics Letters, 78(17):2482–2484, 2001.
  • 186. J. Stockfleth, L. Salamon, and G. Hinrichsen. On the deformation mechanisms of oriented PET and PP films under load. Colloid & Polymer Science, 271(5):423–435, 1993. 10.1007/BF00657386.
  • 187. Z. Suo. Singularities, interfaces and cracks in dissimilar anisotropic media. Proceedings of the Royal Society of London A, 427(1873):321–358, 1990.
  • 188. A. Suzuki and K. Nakayama. Mechanical impedance of soft living tissue based on the model of an oscillating disc on a semi-infinite viscoelastic medium. Japanese Journal of Medical Electronics and Biological Engineering, 37(3):243–249, 1999.
  • 189. M. Taniwaki, T. Hanada, and N. Sakurai. Device for acoustic measurement of food texture using a piezoelectric sensor. Food Research International, 39(10):1099–1105, 2006.
  • 190. J.-F. Thimus, Y. Abousleiman, A.-D. Cheng, O. Coussy, and E. Detournay, editors. Poromechanics - A Tribute to Maurice A. Biot, Proceedings of the Biot Conference on Poromechanics, Louvain-la-Neuve, Belgium, 14-16 September 1998, Rotterdam, 1998. A. A. Balkema.
  • 191. T. B. Thoe, D. K. Aspinwall, and N. Killey. Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy. Journal of Materials Processing Technology, 92-93(0):323–328, 1999.
  • 192. M. D. Thouless. Crack spacing in brittle films on elastic substrates. Journal of the American Ceramic Society, 73(7):2144–2146, 1990.
  • 193. M. D. Thouless and A. G. Evans. Comment on the spalling and edge-cracking of plates. Scripta Metallurgica et Materialia, 24(8):1507–1510, 1990.
  • 194. M. D. Thouless, A. G. Evans, M. F. Ashby, and J. W. Hutchinson. The edge cracking and spalling of brittle plates. Acta Metallurgica, 35(6):1333–1341, 1987.
  • 195. M. D. Thouless, E. Olsson, and A. Gupta. Cracking of brittle films on elastic substrates. Acta Metallurgica et Materialia, 40(6):1287–1292, 1992.
  • 196. G. Thurn, G. A. Schneider, H.-A. Bahr, and F. Aldinger. Toughness anisotropy and damage behavior of plasma sprayed ZrO2 thermal barrier coatings. Surface and Coatings Technology, 123(2-3):147–158, 2000.
  • 197. M. G. A. Tijssens, B. L. J. Sluys, and E. van der Giessen. Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces. European Journal of Mechanics - A/Solids, 19(5):761–779, 2000.
  • 198. D. H. Timm, B. B. Guzina, and V. R. Voller. Prediction of thermal crack spacing. International Journal of Solids and Structures, 40(1):125–142, 2003.
  • 199. S. P. Timoshenko and J. N. Goodier. Theory of Elasticity. Engineering Societies Monographs. McGraw-Hill Inc., 1951.
  • 200. O. Trunova. Effect of thermal and mechanical loadings on the degradation and failure modes of APS TBCs. Dissertation, RWTH Aachen, Germany, 2006.
  • 201. O. Trunova, R. Herzog, T. Wakui, R. W. Steinbrech, E. Wessel, and L. Singheiser. Micromechanisms affecting macroscopic deformation of plasma-sprayed TBCs. In Proceedings of 28th International Conference on Advanced Ceramics and Composites, 21-27 January 2004, Cocoa Beach, USA, volume 25 of Ceramic Engineering and Science Proceedings, pages 411–416, 2004.
  • 202. E. Tzimas, H. M¨ullejans, S. Peteves, J. Bressers, and W. Stamm. Failure of thermal barrier coating systems under cyclic thermomechanical loading. Acta Materialia, 48(18-19):4699–4707, 2000.
  • 203. P. Ueberschlag. PVDF piezoelectric polymer. Sensor Review, 21(2):118–126, 2001.
  • 204. M. Ventre, F. Mollica, and P. A. Netti. The effect of composition and microstructure on the viscoelastic properties of dermis. Journal of Biomechanics, 42(4):430–435, 2009.
  • 205. A. Vexler, I. Polyansky, and R. Gorodetsky. Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer. Journal of Investigative Dermatology, 113(5):732–739, 1999.
  • 206. D. Vlasblom. Skin elasticity. Dissertation, Catholic University of Utrecht, Holland, 1967.
  • 207. K. T. Voisey and T. Clyne. Laser drilling of cooling holes through plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 176(3):296–306, 2004.
  • 208. C. Wagner. Beitrag zur theorie des anlaufsvorganges. Zeitschrift für Physikalische Chemie B, 21(1-2):25–41, 1933.
  • 209. S. Wagner, S. P. Lacour, J. Jones, P.-H. I. Hsu, J. C. Sturm, T. Li, and Z. Suo. Electronic skin: architecture and components. Physica E: Low-dimensional Systems and Nanostructures, 25(2-3):326–334, 2004.
  • 210. W. A. B. Wan Abas and J. C. Barbenel. Uniaxial tension test of human skin in vivo. Journal of Biomedical Engineering, 4(1):65–71, 1982.
  • 211. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt. Optical coherence tomography of the human skin. Journal of the American Academy of Dermatology, 37(6):958–963, 1997.
  • 212. M. L. Williams. The stress around a fault or crack in dissimilar media. Bulletin of the Seismological Society of America, 49(2):199–204, 1959.
  • 213. S. A. Wissing and R. H. Müller. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity - in vivo study. European Journal of Pharmaceutics and Biopharmaceutics, 56(1):67–72, 2003.
  • 214. Wolfram Research, Inc., Champaign, IL. Mathematica Version 6.0, 2007.
  • 215. P. K. Wright and A. G. Evans. Mechanisms governing the performance of thermal barrier coatings. Current Opinion in Solid State and Materials Science, 4(3):255–265, 1999.
  • 216. J. Z. Wu, R. G. Cutlip, D. Welcome, and R. G. Dong. Estimation of the viscous properties of skin and subcutaneous tissue in uniaxial stress relaxation tests. BioMedical Materials and Engineering, 16(1):53–66, 2006.
  • 217. J. Xia, R. D. Miller, C. B. Park, and G. Tian. Determining q of near-surface materials from Rayleigh waves. Journal of Applied Geophysics, 51(2-4):121–129, 2002.
  • 218. J. Xia, R. D. Miller, C. B. Park, and G. Tian. Inversion of high frequency surface waves with fundamental and higher modes. Journal of Applied Geophysics, 52(1):45–57, 2003.
  • 219. C. Xie and W. Tong. Cracking and decohesion of a thin Al2O3 film on a ductile Al-5%Mg substrate. Acta Materialia, 53(2):477–485, 2005.
  • 220. T. Xu, M. Y. He, and A. G. Evans. A numerical assessment of the durability of thermal barrier systems that fail by ratcheting of the thermally grown oxide. Acta Materialia, 51(13):3807–3820, 2003.
  • 221. T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. D. Claussen. Magnetic resonance elastography of the breast : Correlation of signal intensity data with viscoelastic properties. Investigative Radiology, 40(7):412–420, 2005.
  • 222. M. Yanaka, Y. Kato, Y. Tsukahara, and N. Takeda. Effects of temperature on the multiple cracking progress of sub-micron thick glass films deposited on a polymer substrate. Thin Solid Films, 355-356:337–342, 1999.
  • 223. M. Yanaka, T. Miyamoto, Y. Tsukahara, and N. Takeda. In situ observation and analysis of multiple cracking phenomena in thin glass layers deposited on polymer films. Composite Interfaces, 6(5):409–424, 1998.
  • 224. M. Yanaka, Y. Tsukahara, N. Nakaso, and N. Takeda. Cracking phenomena of brittle films in nanostructure composites analysed by a modified shear lag model with residual strain. Journal of Materials Science, 33(8):2111–2119, 1998.
  • 225. H. Yuan and J. Chen. Computational analysis of thin coating layer failure using a cohesive model and gradient plasticity. Engineering Fracture Mechanics, 70(14):1929–1942, 2003.
  • 226. H. Yuan, J. G. Teng, R. Seracino, Z. S. Wu, and J. Yao. Full-range behavior of FRP-to-concrete bonded joints. Engineering Structures, 26(5):553–565, 2004.
  • 227. A. Zemtsov. Nuclear magnetic resonance (NMR) examination of the skin. In J. Serup and G. B. E. Jemec, editors, Handbook of non-invasive methods and the skin. CRC Press, Boca Raton FL, 1995.
  • 228. G. Zhang. Evaluating the viscoelastic properties of biological tissues in a new way. Journal of Musculoskeletal and Neuronal Interactions, 5(1):85–90, 2005.
  • 229. T.-Y. Zhang and M.-H. Zhao. Equilibrium depth and spacing of cracks in a tensile residual stressed thin film deposited on a brittle substrate. Engineering Fracture Mechanics, 69(5):589–596, 2002.
  • 230. X. Zhang, R. R. Kinnick, M. R. Pittelkow, and J. F. Greenleaf. Skin viscoelasticity with surface wave method. In 2008 IEEE International Ultrasonics Symposium, pages 651–653, 2008.
  • 231. F. Zhou and J. F. Molinari. Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency. International Journal for Numerical Methods in Engineering, 59(1):1–24, 2004.
  • 232. F. Zhou and J.-F. Molinari. Stochastic fracture of ceramics under dynamic tensile loading. International Journal of Solids and Structures, 41(22-23):6573–6596, 2004.
  • 233. Y. C. Zhou, T. Tonomori, A. Yoshida, L. Liu, G. Bignall, and T. Hashida. Fracture characteristics of thermal barrier coatings after tensile and bending tests. Surface and Coatings Technology, 157(2-3):118–127, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBE-0007-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.