PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectroscopic techniques in the study of human tissues and their components. Part II, Raman spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among the currently used methods of monitoring human tissues and their components many types of research are distinguished. These include spectroscopic techniques. The advantage of these techniques is the small amount of sample required the rapid process of recording the spectra, and most importantly in the case of biological samples - preparation of tissues is not required. In this work vibrational spectroscopy: ATR-FTIR and Raman spectroscopy will be used. Studies are carried out on tissues: tendons, blood vessels, skin, red blood cells and biological components: amino acids, proteins, DNA, plasma, and deposits.
Rocznik
Strony
121--133
Opis fizyczny
Bibliogr. 105 poz., rys., tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] OLSZTYŃSKA-JANUS S., SZYMBORSKA-MAŁEK K., GĄSIORGŁOGOWSKA M., WALSKI T., KOMOROWSKA M., WITKIEWICZ W., PEZOWICZ C. KOBIELARZ M., SZOTEK S., Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy, Acta of Bioengineering and Biomechanics, 2012, 14, 101–115.
  • [2] PARKER F.S., Application of infrared Raman and resonance Raman spectroscopy in biochemistry, Plenum Press, New York, 1983.
  • [3] SCHRADER B., KELLER S., LÖCHTE T., FENDEL. S., MOORE D.S., SIMON A., SAWATZKI J., NIR FT Raman spectroscopy in medical diagnosis, J. Mol. Struct., 1995, 348, 293–296.
  • [4] SCHRADER B., DIPPEL B., ERB I., KELLER S., LÖCHTE T., SCHULZ H., TATSCH E., WESSEL S., NIR Raman spectroscopy in medicine and biology: results and aspects, J. Mol. Struct., 1999, 480–481, 21–32.
  • [5] MANOHARAN R., WANG Y., FELD M.S., Histochemical analysis of biological tissues using Raman spectroscopy, Spectrochim. Acta, 1996, 52, 215–249.
  • [6] SHIM M.G., WILSON B.C., Development of an In Vivo Raman spectroscopic system for diagnostic applications, J. Raman Spectrosc., 1997, 28, 131–142.
  • [7] PAPPAS D., SMITH B.W., WINEFORDNER J.D., Raman spectroscopy in bioanalysis, Talanta, 2000, 51, 131–144.
  • [8] LYNG F.M., FAOLÁIN E.Ò., CONROY J., MEADE A.D., KNIEF P., DUFFY B., HUNTER M.B., BYRNE J.M., KELEHAN P., BYRNE H.J., Vibrational spectroscopy for cervical cancer pathology from biochemical analysis to diagnostic tool, Exp. Mol. Pathol., 2007, 82, 121–129.
  • [9] SALZER R., SIESLER H.W., Infrared and Raman spectroscopic imaging, Wiley-VCH Verlag GmbH & Co KgaA, Weinheim, Germany, 2009.
  • [10] AMER M.S., Raman Spectroscopy for Soft Matter Applications, John Wiley & Sons Inc., Hoboken, New Jersey, 2009.
  • [11] DOWNES A., ELFICK A., Raman spectroscopy and related techniques in biomedicine, Sensor, 2010, 10, 1871–1889.
  • [12] MOVASAGHI Z., REHMAN S., REHMAN U.I., Raman spectroscopy of biological tissues, Appl. Spectrosc. Rev., 2007, 42, 5, 493–541.
  • [13] AGACHE P., HUMBERT P., Measuring the skin, Springer, Verlag, Berlin, Germany, 2004.
  • [14] GEERLIGS M., Skin layer mechanics, PhD Thesis, TU Eindhoven, 2010.
  • [15] SCOTT D.W., MILLER W.H., GRIFFIN C.E., Muller & Kirk’s Small Animal Dermatology, W.B. Saunders Company, Philadelphia, 2001.
  • [16] FARAGE M.A., MILLER K.W., MAIBACH H.I., Textbook of Aging Skin, Springer, 2010.
  • [17] SILVER F.H., Mechanosensing and Mechanochemical Transduction in Extracellular Matrix Biological Chemical Engineering and Physiological Aspects, Springer, New York, 2006.
  • [18] ROSENBLOOM J., ABRAMS W.R., MECHAM R., Extracellular matrix 4: the elastic fiber, Faseb. J., 1993, 7, 13, 1208–1218.
  • [19] LANGER K., On the anatomy and physiology of the skin, British J. Plast. Surg., 1978, 17, 31, 93-106
  • [20] ARUMUGAM V., NARESH M.D., SANJEEVI R., Effect of strain rate on the fracture behavior of skin, J. Biosci., 1994, 19, 307–313.
  • [21] SZOTEK S., BĘDZIŃSKI R., KOBIELARZ M., GĄSIORGŁOGOWSKA M., KOMOROWSKA M., MAKSYMOWICZ K., HANUZA J., HERMANOWICZ K., Human skin properties determined by mechanical tests and Raman spectroscopy, Eng. Biomater., 2009, 89–91, 208–210.
  • [22] NÍ ANNAIDH A., BRUYÈRE K., DESTRADE M., GILCHRIST M.D., OTTÉNIO M., Characterization of the anisotropic mechanical properties of excised human skin, J. Mech. Behav. Biomed., 2011, (doi:10.1016/j.jmbbm.2011.08.016)
  • [23] GNIADECKA M., NIELSEN O.F., CHRISTENSEN D.H., WULF H.C., Structure of water proteins and lipids in intact human skin, hair and nail, J. Invest. Dermatol., 1998, 110, 393–398.
  • [24] EDWARDS H.G.M., GNIADECKA M., PETERSEN S., HANSEN J.P.H., NIELSEN O.F., CHRISTENSEN D.H., WULF H.C., NIR-FT Raman spectroscopy as a diagnostic probe for mummified skin and nails, Vib. Spectrosc., 2002, 28, 3–15.
  • [25] KNUDSEN. L., JOHANSSON C.K., PHILIPSEN P.A., GNIADECKA M., WULF H.C., Natural variations and reproducibility of in vivo near-infrared Fourier transform Raman spectroscopy of normal human skin, J. Raman Spectrosc., 2002, 33, 574–579.
  • [26] AKHTAR W., EDWARDS H.G.M., Fourier-transform Raman spectroscopy of mammalian and avian keratotic biopolymers, Spectrochim. Acta A, 1997, 53, 81–90.
  • [27] GREVE T.M., ANDERSEN K.B., NIELSEN O.F., ATR-FTIR FTNIR and near-FT-Raman spectroscopic studies of molecular composition in human skin in vivo and pig ear skin in vitro, Spectrosc., 2008, 22, 437–457.
  • [28] EDWARDS H.G.M., WILLIAMS A.C., BARRY B.W., Potential Applications of FT-Raman Spectroscopy for Dermatological Diagnostics, J. Mol. Struct., 1995, 347, 379–358.
  • [29] SHIM M.G., WILSON B.C., Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications, J. Raman Spectrosc., 1997, 28, 131–142.
  • [30] ANIGBOGU A.N.C., WILLIAMS A.C., BARRY B.W., EDWARDS H.G.M., Fourier transform Raman spectroscopy of interactions between the penetration enhancer dimethyl sulfoxide and human stratum corneum, Int. J. Pharm., 1995, 125, 265–282.
  • [31] DONG R., YAN X., PANG X., LIU S., Temperature-dependent Raman spectra of collagen and DNA, Spectrochim. Acta A, 2004, 60, 557–561.
  • [32] LYNG F.M., FAOLAIN E.O., CONROY J., MEADE A.D., KNIEF P., DUFFY B., HUNTER M.B., BYRNE J.M., KELEHAN P., BYRNE H.J., Vibrational spectroscopy for cervical cancer pathology from biochemical analysis to diagnostic tool, Exp. Mol. Pathol., 2007, 82, 121–129.
  • [33] MANOHARAN R., WANG Y., FELD M.S., Histochemical analysis of biological tissues using Raman spectroscopy, Spectrochim. Acta A, 1996, 52, 215–249.
  • [34] CHENG W.T., LIU M.T., LIU H.N., LIN S.Y., Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma, Mircosc. Res. Tech., 2005, 68, 2, 75–79.
  • [35] PENTEADO S.G., MENESES C.S., DE OLIVEIRA LOBO A., MARTIN A.A., DA SILVA MARTINHO H., Diagnosis of rotator cuff lesions by FT-Raman spectroscopy: a biochemical study, presented at SPEC 2006 Shedding Light on Disease: Optical Diagnosis for the New Millenium 4th International Conference, 20–24th May 2006, Heidelberg, Germany.
  • [36] POŁOMSKA M., KUBISZ L., KALAWSKI R., OSZKINIS G., FILIPIAK R., MAZUREK A., Fourier Transform Near Infrared Raman spectroscopy in studies on connective tissue, Acta Phys. Pol. A, 2010, 118, 136–140.
  • [37] GĄSIOR-GŁOGOWSKA M., KOMOROWSKA M., HANUZA J., PTAK M., KOBIELARZ M., Structural alteration of collagen fibres – spectroscopic and mechanical studies, Acta Bioeng. Biomech., 2010, 12, 4, 25–32.
  • [38] WANG Y.-N., GALIOTIS C., BADER D.L., Determination of molecular changes in soft tissues under strain using laser Raman microscopy, J. Biomech., 2000, 33, 4, 483–486.
  • [39] COLOMBAN PH., DINH H.M., RIAND J., PRINSLOO L.C., MAUCHAMP B., Nanomechanics of single silkworm and spider fibres: a Raman and micro-mechanical in situ study of the conformation change with stress, J. Raman Spectrosc., 2008, 39, 1749–1764.
  • [40] GĄSIOR-GŁOGOWSKA M., KOMOROWSKA M., HANUZA J., MĄCZKA M., ZAJĄC A., BĘDZIŃSKI R., KOBIELARZ M., MAKSYMOWICZ K., KUROPKA P., SZOTEK S., FT-Raman spectroscopic study of human skin subjected to uniaxial stress, in preparation.
  • [41] FENDEL S., SCHRADER B., Investigation of skin and skin lesions by NIR-FT-Raman spectroscopy, Fresenius J. Anal. Chem., 1998, 360, 609–613.
  • [42] GNIEDECKA M., PHILIPSEN P.A., SIGURDSSON S., NIELSEN O.F., CHRISTENSEN D.H., HERCEGOVA J., ROSSEN K., THOMSEN H.K., GNIADECKI R., HANSEN L.K., WULF H.CH., Melanoma diagnosis by Raman spectroscopy and neural network: structure alterations in proteins and lipids in intact cancer tissue, J. Invest. Dermatol., 2004, 122, 443–449.
  • [43] SIGURDSSON S., PHILIPSEN P.A., HANSEN L.K., LARSEN J., GNIADECKA M., WULF H.C., Detection of Skin Cancer by Classification of Raman Spectra, IEEE T Bio-Med. Eng., 2004, 51, 10, 1784–1793.
  • [44] ZENG H., LUI H., MCLEAN D.I., Skin cancer detection using in vivo Raman spectroscopy, 2011, (DOI: 10.1117/2.1201104.003705).
  • [45] GNIADECKA M., NIELSEN O.F., WULF H.C., Water content and structure in malignant and benign skin tumours, J. Mol. Struct., 2003, 661–662, 405–410.
  • [46] NAKAGAWA N., MATSUMOTO M., SAKAI S., In vivo measurement of the water content in the dermis by confocal Raman spectroscopy, Skin Res. Technol., 2010, 16, 137–141.
  • [47] EGAWA M., HIRAO T., TAKAHASHI M., In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy, Acta Derm. Venereol., 2007, 87, 1, 4–8.
  • [48] LIN S.Y., LI M.J., CHENG W.T., FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues, Spectroscopy, 2007, 21, 1–3.
  • [49] KOBIELARZ M., MAKSYMOWICZ K., KALETA K., KUROPKA P., MARYCZ K., BĘDZIŃSKI R., Histological and ultrastructural evaluation of the walls of abdominal aortic aneurysms, J. Eng. Biomater., 2010, 13, 83–87.
  • [50] THOMPSON R., GERAGHTY P., LEE J., Abdominal aortic aneurysms: basic mechanisms and clinical implications, Curr. Prob. Surg., 2002, 39, 93–232.
  • [51] XIE J., ZHOU J., FUNG Y., Bending of blood vessel wall: stress-strain laws of the intima-media and adventitia layers, J. Biomech. Eng., 1995, 117, 136–145.
  • [52] SCHULZE-BAUER C., REGITINIG P., HOLZAPFEL G., Mechanics of the human femoral adventitia including high-pressure response, Am. J. Physiol. Heart Circ. Physiol., 2002, 282, 6, H2427-H2440.
  • [53] KOT M., KOBIELARZ M., MAKSYMOWICZ K., Assessment of mechanical properties of arterial calcium deposition, T. Famena, 2011, 35, 49–56.
  • [54] VITO R., DIXON S., Blood vessel constitutive models – 1995–2002, Ann. Rev. Bio. Eng., 2003, 5, 413–439.
  • [55] BANK A., KAISER D., Smooth muscle relaxation-effect on arterial compliance distensibility elastic modulus and pulse wave velocity, Am. J. Hypertens., 1998, 32, 356–359.
  • [56] HANUZA J., MĄCZKA M., GĄSIOR-GŁOGOWSKA M., KOMOROWSKA M., BĘDZIŃSKI R., SZOTEK S., MAKSYMOWICZ K., HERMANOWICZ K., FT-Raman spectroscopic study of thoracic aortic wall subjected to uniaxial stress, J. Raman Spectrosc., 2009, 40, 1163–1169.
  • [57] CARMO M., COLOMBO L., BRUNO A., CORSI F., RONCORONI L., CUTTIN M., RADICE F., MUSSINI E., SETTEMBRINI P., Alteration of elastin collagen and their cross-links in abdominal aortic aneurysms, Eur. J. Vasc. Endovas., 2002, 23, 543-549.
  • [58] ROBICSEK F., THUBRIKAR M., FOKIN A., Cause of degenerative disease of the trileaflet aortic valve: review of subject and presentation of a new theory, Ann. Thor. Surg., 2002, 73, 1346–1354.
  • [59] KOBIELARZ M., MAKSYMOWICZ K., BĘDZIŃSKI R., Elastin and collagen fibres alterations for abdominal aortic aneurysms population with constant maximum diameter size, J. Eng. Biomater., 2011, 14, 2–6.
  • [60] SONESSON B., LANNE T., VERNERSSON E., HANSEN F., Sex difference in the mechanical properties of the abdominal aorta in human beings, J. Vasc. Surg., 1994, 20, 959–969.
  • [61] VAN BAVEL E., SIERSMA P., SPAAN J., Elasticity of passive blood vessels: a new concept, Am. J. Physiol-Heart, 2003, 285, H1986–H2000.
  • [62] WILLERSON J.T., CAMPBELL W.B., WINNIFORD M.D., Conversion from chronic to acute coronary artery disease: speculation regarding mechanism, Am. J. Cardiol., 1984, 54, 1349–1354.
  • [63] RÖMER T.J., BRENNAN III J.F., BAKKER SCHUT T.C., WOLTHUIS R., VAN DEN HOOGEN R.C.M., EMEIS J.J., VAN DER LAARSE A., BRUSCHKE A.V., PUPPELS G.J., Raman spectroscopy for quantifying cholesterol in intact coronary artery wall, Atherosclerosis, 1998, 141, 117–124.
  • [64] VAN DEL POLL S.W.E., ROMER T.J., PUPPELS G., VAN DER LAARSE A., Raman spectroscopy of atherosclerosis., J. Cardiovasc. Risk, 2002, 9, 255–261.
  • [65] PENEL G., CAU E., DELFOSSE C., REY CH., HARDOUIN P., JEANFILS J., DELECOURT CH., LEMAITRE J., LEROY G., Raman Microspectrometry Studies of Calcified Tissues and Related Biomaterials. Raman Studies of Calcium Phosphate Biomaterials, Dent. Med. Probl., 2003, 40, 1, 37–43.
  • [66] DE PAULA A.R., SATHAIAH S., Raman spectroscopy for diagnosis of atherosclerosis: a rapid analysis using neural networks, Med. Eng. Phys., 2005, 27, 237–244.
  • [67] BUSCHMAN H.P., MOTZ J.T., DEINUM G., ROMER T.J., FITZMAURICE M., KRAMER J.R., VAN DER LAARSE A., BRUSCHKE A.V., FELD M.S., Diagnosis of human coronary atherosclerosis by morphology-based Raman spectroscopy, Cardiovasc. Pathol., 2001, 10, 59–68.
  • [68] GĄSIOR-GŁOGOWSKA M., MISIAK H., OLSZTYŃSKA-JANUS S., KOMOROWSKA M., HANUZA J., MAKSYMOWICZ K., KOBIELARZ M., NIR-FT Raman and ATR FT-IR spectroscopic characterization of human atherosclerotic plaques, in preparation.
  • [69] LEGEROS R.Z., Formation and transformation of calcium phosphates: relevance to vascular calcification, Kardiol., 2001, 90, Suppl 3 III/116–III/124.
  • [70] ELLIOTT J., HOLCOMB D., YOUNG R., Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel, Calcif. Tissue Int., 1985, 37, 372–375.
  • [71] SMITH R., REHMAN I., Fourier transform Raman spectroscopic studies of human bone. J. Mater. Sci: Mater. Med., 1995, 5, 775–778.
  • [72] DE CARMEJANE O., MORRIS M.D., DAVIS M.K., STIXRUDE L., TECKLENBURG M., RAJACHAR R.M., KOHN D.H., Bone Chemical Structure Response to Mechanical Stress Studied by High Pressure Raman Spectroscopy, Calcif. Tissue. Int., 2005, 76, 207–213.
  • [73] PENEL G., LEROY G., REY C., BRES E., MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites, Calcif. Tissue. Int., 1998, 63, 475–481.
  • [74] PENEL G., DELFOSSE C., DESCAMPS M., LEROY G., Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy, Bone, 2005, 36, 893–901.
  • [75] GAMSJAEGER S., MASIC A., ROSCHGER P., KAZANCI M., DUNLOP J.W.C., KLAUSHOFER K., PASCHALIS E.P., FRATZL P., Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy, Bone, 2010, 47, 392–399.
  • [76] KOZIELSKI M., BUCHWALD T., SZYBOWICZ M., BŁASZCZAK Z., PIORTOWSKI A., CIESIELCZYK B., Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping, J. Mater. Sci. Mater. Med., 2011, 22, 1653–1661.
  • [77] NIKODEM A., DOBRZAŃSKI Z., Influence of calcium content in feed phosphate on mechanical properties of bone tissue, Eng. Biomater., 2011, 14, 109–111, 78–80.
  • [78] KAZANCI M., ROSCHGER P., PASCHALIS E.P., KLAUSHOFER K., FRATZL P., Bone osteonal tissues by Raman spectral mapping: orientation-composition, J. Struct. Biol., 2006, 156, 489–496.
  • [79] TERMINE J.D., POSNER A.S., Infra-red determination of the percentage of crystallinity in apatitic calcium phosphates, Nature, 1966, 211, 268–270.
  • [80] CARDEN A., MORRIS M.D., Application of vibrational spectroscopy to the study of mineralized tissues (review), J. Biomed. Opt., 2000, 5, 259–268.
  • [81] AKKUS O., ADAR F., SCHAFFLER M.B., Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone, Bone, 2004, 34, 443–453.
  • [82] SAHAR N.D., HONG S.-I., KOHN D.H., Micro- and nanostructural analyses of damage in bone, Micron, 2005, 36, 617–629.
  • [83] MCCREADIE B.R., MORRIS M.D., CHEN T., SUDHAKER RAO D., FINNEY W.F., WIDJAJA E., GOLDSTEIN S.A., Bone tissue compositional differences in women with and without osteoporotic fracture, Bone, 2006, 39, 1190–119.
  • [84] BI X., PATIL CH.A., LYNCH C.C., PHARR G.M., MAHADEVANJANSEN A., NYMAN J.S., Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model, J. Biomech., 2011, 44, 297–303.
  • [85] JANKO M., DAVYDOVSKAYA P., BAUER M., ZINK A., STARK R.W., Anisotropic Raman scattering in collagen bundles, Opt. Lett., 2010, 35, 16, 2765–2767.
  • [86] MASIC A., BERTINETTI L., SCHUETZ R., GALVIS L., TIMOFEEVA N., DUNLOP J.W.C., SETO J., HARTMANN M.A., FRATZL P., Observations of multi-scale stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy, Biomacromolecules, 2011, (DOI: 10.1021/bm201008b).
  • [87] CHURCH J.S., CORINO G.L., WOODHEAD A.L., The effect of stretching on wool fibres as monitored by FT-Raman spectroscopy, J. Mol. Struct., 1998, 440, 1–3, 15–23.
  • [88] SIRICHAISIT J., YOUNG R.J., VOLLRATH F., Molecular deformation in spider dragline silk subjected to stress, Polym., 2000, 41, 3, 1223–1227.
  • [89] KOENING J.L., Infrared and Raman Spectroscopy of Polymers, Rapra Review Reports, Smithers Rapra Technology Limited, Shawbury, Shrewsbury, Shropshire, UK, 2001, 12, 2, Report 134.
  • [90] GREGORIOU V.G., BRAIMAN M.S., Vibrational Spectroscopy of Biological and Polymeric Materials, Boca Raton Fla London, CRC Press/Taylor& Francis Group, London, UK, 2006.
  • [91] WINCHESTER M.W., Application of Raman scattering to the measurement of ligament tension, Proceedings of the IEEE Eng. Med. Biol. Soc., 2008, 3432–3437.
  • [92] PRESCOTT B., STEINMETZ W., THOMAS Jr. G.J., Characterization of DNA structures by laser Raman spectroscopy, Biopolymers, 1984, 23, 235–256.
  • [93] TAILLANDIER E., LIQUIER J., GHOMI M., Conformational transitions of nucleic acids studied by IR and Raman spectroscopies, J. Mol. Struct., 1989, 214, 185–211.
  • [94] DUGUID J.G., BLOOMFIELD V.A., BENEVIDES J.M, THOMAS Jr. G.J., Raman Spectroscopy of DNA-Metal Complexes. I. The Thermal Denaturation of DNA in the Presence of Sr2+ Ba2+Mg2+ Ca2+ Mn2+ Co2+ Ni2+ and Cd2+, Biophys. J, 1995, 69, 2623–2641.
  • [95] ERFURTH S.C., PETICOLAS W.L., Melting and premelting phenomenon in DNA by laser Raman scattering, Biopolymers, 1975, 14, 247–264.
  • [96] MOVILEANU L., BENEVIDES J.M., THOMAS Jr. G.J., Temperature dependence of the Raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA). poly(dT) and comparison with poly(dA-dT).poly(dA-dT), Biopolymers, 2002, 63, 181–194.
  • [97] EICHHORN G.L., CLARK P., Interactions of metal ions with polynucleotides and related compounds. V. The unwinding and rewinding of DNA strands under the influence of copper(Il) ions, Proc. Natl. Acad. Sci., USA, 1965, 53, 586–593.
  • [98] EICHHORN G.L., SHIN Y.A., Interaction of metal ions with polynucleotides and related compounds. XII. The relative effect of various metal ions on DNA helicity, J Am. Chem. Soc., 1968, 90, 7323–7328.
  • [99] ANDERSON J.A., KUNTZ G.P., EVANS H.H., SWIFT T.J., Preferential interaction of manganous ions with the guanine moiety in nucleosides dinucleoside monophosphates and deoxyribonucleic acid, Biochemistry, 1971, 10, 4368–4374.
  • [100] DIX D.E., STRAUS D.B., DMA helix stability. I. Differential stabilization by counter cations, Arch. Biochem. Biophys., 1972, 152, 299–310.
  • [101] LANGLAIS M., TAJMIR-RIAHI H.A., SAVOIE R., Raman spectroscopic study of the effects of Ca2+ Mg2+ Zn2+ and Cd2+ ions on calf thymus DNA: binding sites and conformational changes, Biopolymers, 1990, 30, 743–752.
  • [102] KNOLL D.A., FRIED M.G., BLOOMFIELD V.A., Heat-induced DNA aggregation in the presence of divalent metal salts, [in:] M.H. Sarna and R.H. Sarna (eds.), Structure and Expression: DNA and Its Drug Complexes Adenine, Press Albany New York, 1988, 123–145.
  • [103] IYANDURAI N., SAROJINI R., Magnesium (II) Ion Induced Changes on the Structure of DNA: An FT – Raman Study, J. Appl. Sci. Res., 2009, 5, 283–285.
  • [104] DUGUID J.G., BLOOMFIELD V.A., Aggregation of melted DNA by divalent metal ion-mediated cross-linking, Biophysic. J., 1995, 69, 2642–2648.
  • [105] O’CONNOR T., MANSY S., BINA M., MCMILLIN D.R., BRUCK M.A., TOBIAS R.S., The pH-dependent structure of calf thymus DNA studied by Raman spectroscopy, Biophys. Chem., 1982, 15, 53–64.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBD-0003-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.