Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The experimental mechanostimulation of biological cell and tissue test samples has become a standard method in biomechanics research. In order to apply a static or a dynamic mechanical load on biological tissue a variety of different devices for the mechanostimulation have been developed. While cyclic load applications are typically restricted to sinusoidal or rectangular stimulation patterns, a device for more complex dynamic stimulation patterns which would simulate, for instance, the dynamics during mechanical ventilation does not exist. The dynamic alveolar recruitment/derecruitment has been identified as one of the main causes of ventilator-induced lung injury. Therefore, there is a demand for an experimental ventilation-analogue mechanostimulation of the pulmonary cells and tissue. Here, we present our mechanostimulator combined with a new driving system which is able to produce the ventilation-analogue patterns of a dynamic mechanostimulation. In an experimental setting where the test samples were simulated by silicone-membranes in single-, double- and fourfold membrane configuration, we varied the stimulation amplitude from 5% to 60% surface increase and stimulation frequencies ranging from 15/min to 2000/min. Furthermore, the frequency components of mechanical load applied to the sample at sinusoidal, rectangular and ventilation- analogue mechanostimulations were analyzed by means of a Fast Fourier Transform (FFT). The system allows for a homogeneous mechanostimulation with various temporal profiles which may include frequency components of up to 20 Hz. The relative amount of mechanical load applied to the sample at the main stimulation frequency was 76% during sinusoidal stimulation, 35% during the rectangular stimulation, and 29% to 42% during ventilation analogue stimulation.
Czasopismo
Rocznik
Tom
Strony
53--61
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
- Division for Experimental Anesthesiology, University Medical Center Freiburg, Germany, katharina.gamerdinger@uniklinik-freiburg.de
Bibliografia
- [1] EDWARDS Y.S., Stretch stimulation: its effects on alveolar type II cell function in the lung, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2001, 129, 245–260.
- [2] FOSTER C.D., VARGHESE L.S., GONZALES L.W., MARGULIES S.S., GUTTENTAG S.H., The Rho pathway mediates transition to an alveolar type I cell phenotype during static stretch of alveolar type II cells, Pediatr. Res., 2010, 67, 585–590.
- [3] LUJAN T.J., WIRTZ K.M., BAHNEY C.S., MADEY S.M., JOHNSTONE B., BOTTLANG M., A novel bioreactor for the dynamic stimulation and mechanical evaluation of multiple tissue-engineered constructs, Tissue Eng. Part C Methods, 2011, 17, 367–374.
- [4] TSCHUMPERLIN D.J., MARGULIES S.S., Equibiaxial deformation- induced injury of alveolar epithelial cells in vitro, Am. J. Physiol., 1998, 275, L1173–1183.
- [5] LAKSHMANAN V., YANG T.H., REUBEN R.L., HAMMER J., ELSE R.W., Multi-scale techniques of measuring the dynamic properties of biological tissues, Technol. Health Care, 2006, 14, 297–309.
- [6] GATTINONI L., PROTTI A., CAIRONI P., CARLESSO E., Ventilator-induced lung injury: the anatomical and physiological framework, Crit. Care Med., 2010, 38, S539–548.
- [7] GUTTMANN J., EBERHARD L., FABRY B., BERTSCHMANN W., ZERAVIK J., ADOLPH M., ECKART J., WOLFF G., Time constant/volume relationship of passive expiration in mechanically ventilated ARDS patients, Eur. Respir. J., 1995, 8, 114–120.
- [8] SCHUMANN S., STAHL C.A., MOLLER K., SCHNEIDER M., METZKE R., WALL W.A., PRIEBE H.J., GUTTMANN J., Contactfree determination of material characteristics using a newly developed pressure-operated strain-applying bioreactor, J. Biomed. Mater Res. B Appl. Biomater., 2008, 86B, 483–492.
- [9] ARMBRUSTER C., SCHNEIDER M., SCHUMANN S., GAMERDINGER K., CUEVAS M., RAUSCH S., BAAKEN G., GUTTMANN J., Characteristics of highly flexible PDMS membranes for long-term mechanostimulation of biological tissue, J. Biomed. Mater Res. B Appl. Biomater., 2009, 91, 700–705.
- [10] DASSOW C. et al., Biaxial distension of precision-cut lung slices, J. Appl. Physiol., 2010, 108, 713–721.
- [11] ARMBRUSTER C., DASSOW C., GAMERDINGER K., SCHNEIDER M., SUMKAUSKAITE M., GUTTMANN J., SCHUMANN S., Mechanostimulation, electrostimulation and force measurement in an in vitro model of the isolated rat diaphragm, Physiol. Meas., 2011, 32, 1899–1912.
- [12] SELBY J.C., SHANNON M.A., Apparatus for measuring the finite load-deformation behavior of a sheet of epithelial cells cultured on a mesoscopic freestanding elastomer membrane, Rev. Sci. Instrum., 2007, 78, 094301.
- [13] WREN T.A.L., LINDSEY D.P., BEAUPRÉ G.S., CARTER D.R., Effects of Creep and Cyclic Loading on the Mechanical Properties and Failure of Human Achilles Tendons, Ann. Biomed. Eng., 2003, 31, 710–717.
- [14] BANES A.J., LINK G.W., SNYDER L.R., Comparison of reversed-phase columns for the separation of tryptic peptides by gradient elution. Correlation of experimental results and model prediction, J. Chromatogr., 1985, 326, 419–431.
- [15] PUGIN J., DUNN I., JOLLIET P., TASSAUX D., MAGNENAT J.L., NICOD L.P., CHEVROLET J.C., Activation of human macrophages by mechanical ventilation in vitro, Am. J. Physiol., 1998, 275, L1040–1050.
- [16] TRZEWIK J., ARTMANN-TEMIZ A., LINDER P.T., DEMIRCI T., DIGEL I., ARTMANN G.M., Evaluation of lateral mechanical tension in thin-film tissue constructs, Ann. Biomed. Eng., 2004, 32, 1243–1251.
- [17] AROLD S.P., WONG J.Y., SUKI B., Design of a new stretching apparatus and the effects of cyclic strain and substratum on mouse lung epithelial-12 cells, Ann. Biomed. Eng., 2007, 35, 1156–1164.
- [18] GERSTMAIR A., FOIS G., INNERBICHLER S., DIETL P., FELDER E., A device for simultaneous live cell imaging during uniaxial mechanical strain or compression, J. Appl. Physiol., 2009, 107, 613–620.
- [19] WANG Y., MACIEJEWSKI B.S., SOTO-REYES D., LEE H.S., WARBURTON D., SANCHEZ-ESTEBAN J., Mechanical stretch promotes fetal type II epithelial cell differentiation via shedding of HB-EGF and TGF-alpha, J. Physiol., 2009, 587, 1739–1753.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBD-0003-0034