PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of tendinous tissue properties on force output evoked by 2-pulse trains at different inter-pulse intervals in the human tibialis anterior muscle

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to clarify the effects of tendinous tissue properties on origin of greater force output at short inter-pulse intervals in the 2-pulse trains compared to those at longer inter-pulse intervals. Thus, this study investigated the contributions of the second stimulus (C2) in 2-pulse trains with different inter-pulse intervals on the torque response and tendinous tissue properties of human skeletal muscle in vivo. The torque response and tendinous tissue elongation following single pulses and 2-pulse trains at different inter-pulse intervals (5, 10, 20, 30, 40, 50, 80, 100, 150, and 200 ms) were recorded in the tibialis anterior muscle using real-time ultrasonography. C2 with inter-pulse intervals of 5-100 ms invoked significantly greater torque responses than single pulses. In contrast, the elongation and compliance of tendinous tissue for C2 with inter-pulse intervals from 5-80 ms were significantly lower than those of the single-pulse response. A significant negative relationship between torque response and tendinous tissue compliance was observed in C2 with different inter-pulse intervals. The torque response as a result of C2 is greater at short inter-pulse intervals in which the force summation due to second stimulus coincides with the period of decreased tendinous tissue compliance due to the first stimulus.
Rocznik
Strony
45--52
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Faculty of Health and Medical Sciences, Department of Sports and Health Sciences, Aichi Shukutoku University, yohta@asu.aasa.ac.jp
Bibliografia
  • [1] COOPER S., ECCLES J.C., The isometric responses of mammalian muscles, J. Physiol., 1930, 69, 377–385.
  • [2] STEIN R.B., PARMIGGIANI F., Nonlinear summation of contractions in cat muscles. I. Early depression, J. Gen. Physiol., 1981, 78, 277–293.
  • [3] DUCHATEAU J., HAINAUT K., Nonlinear summation of contractions in striated muscle. I. Twitch potentiation in human muscle, J. Muscle. Res. Cell. Motil., 1968, 7, 11–17.
  • [4] PARMIGGIANI F., STEIN R.B., Nonlinear summation of contractions in cat muscles. II. Later facilitation and stiffness changes, J. Gen. Physiol., 1981, 78, 295–311.
  • [5] STEIN R.B., GORDON T., Nonlinear stiffness – force relationships in whole mammalian skeletal muscles, Can. J. Physiol. Pharmacol., 1986, 64, 1236–1244.
  • [6] BOJSEN-MOLLER J., MAGNUSSON S.P., RASMUSSEN L.R., KJAER M., AAGAARD P., Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures, J. Appl. Physiol., 2005, 99, 986–994.
  • [7] LIEBER R.L., LEONARD M.E., BROWN-MAUPIN C.G., Effects of muscle contraction on the load-strain properties of frog aponeurosis and tendon, Cells Tissues Organs, 2000, 166, 48–54.
  • [8] MAGANARIS C.N., NARICI M.V., REEVES N.D., In vivo human tendon mechanical properties: effect of resistance training in old age, J. Musculoskelet. Neuronal. Interact., 2004, 4, 204–208.
  • [9] MAGNUSSON S.P., HANSEN P., AAGAARD P., BROND J., DYHRE-POULSEN P., BOJSEN-MOLLER J., KJAER M., Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo, Acta. Physiol. Scand., 2003, 177, 185–195.
  • [10] OHTA Y., SHIMA N., YABE K., The effect of summation of contraction on acceleration signals in human skeletal muscle, J. Electromyogr. Kinesiol., 2010, 20, 1007–1013.
  • [11] ODA T., HIMENO R., C HAY D., CHINO K., KURIHARA T., NAGAYOSHI T., KANEHISA H., FUKUNAGA T., KAWAKAMI Y., In vivo behavior of muscle fascicles and tendinous tissues in human tibialis anterior muscle during twitch contraction, J. Biomech., 2007, 40, 3114–3120.
  • [12] WICKIEWICZ T.L., ROY R.R., POWELL P.L., EDGERTON V.R., Muscle architecture of the human lower limb, Clin. Orthop. Relat. Res., 1983, 179, 275–283.
  • [13] FUKUNAGA T., ROY R.R., SHELLOCK F.G., HODGSON J.A., EDGERTON V.R., Specific tension of human plantar flexors and dorsiflexors, J. Appl. Physiol., 1996, 80, 158–165.
  • [14] NARICI M.V., LANDONI L., MINETTI A.E., Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements, Eur. J. Appl. Physiol. Occup. Physiol., 1992, 65(5), 438–444.
  • [15] OHTA Y., YABE K., The effects of muscle architectural change with a pre-motion silent period on the subsequent muscular output during rapid voluntary movement, J. Electromyogr. Kinesiol., 2010, 20, 136–141.
  • [16] OHTA Y., SHIMA N., YABE K., Changes in force and tendinous tissue elongation during the early phase of tetanic summation in in vivo human tibialis anterior muscle, J. Biomech., 2010, 43, 998–1001.
  • [17] RUGG S.G., GREGOR R.J., MANDELBAUM B.R., CHIU L., In vivo moment arm calculations at the ankle using magnetic resonance imaging (MRI), J. Biomech., 1990, 23, 495–501.
  • [18] DUCHATEAU J., HAINAUT K., Nonlinear summation of contractions in striated muscle, II. Potentiation of intracellular Ca2+ movements in single barnacle muscle fibres, J. Muscle. Res. Cell. Motil., 1986, 7, 18–24.
  • [19] ITO M., KAWAKAMI Y., ICHINOSE Y., FUKASHIRO S., FUKUNAGA T., Nonisometric behavior of fascicles during isometric contractions of a human muscle, J. Appl. Physiol., 1998, 85, 1230–1235.
  • [20] HIBLAR T., BOLSON E.L., HUBKA M., SHEEHAN F.H., KUSHMERICK M.J., Three dimensional ultrasound analysis of fascicle orientation in human tibialis anterior muscle enables analysis of macroscopic torque at the cellular level, Adv. Exp. Med. Biol., 2003, 538, 635–644; discussion 645.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBD-0003-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.