PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Viscoelastic properties of the papillary muscle: experimental and theoretical study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is well known that the structure of biological tissue is closely related to tissue functions and defines its viscoelastic properties. It is necessary to create a model combining structural organization of myocardium and its viscoelastic properties to develop a model of cardiac wall of intact or deceased heart. This paper is devoted to experimental and theoretical study of viscoelastic behavior of isolated myocardial samples. A three-dimensional structural-functional model of papillary muscle is presented. The model adequately describes nonlinear viscoelastic behavior of isolated papillary muscles under uniaxial strain both in static condition and under dynamic loading.
Rocznik
Strony
37--44
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
autor
Bibliografia
  • [1] BRADY A.J., Mechanical properties of isolated cardiac myocytes, Physiol. Rev., 1991, 71, 413–428.
  • [2] SWEITZER N.K., MOSS R.L., Determinants of loaded shortening velocity in single cardiac myocytes permeabilized with alpha-hemolysin, Circulation Research, 1993, 73, 1150–1162.
  • [3] GRANZIER H.L., IRVING T.C., Passive Tension in Cardiac Muscle: Contribution of Collagen, Titin, Microtubules, and Intermediate Filaments, Biophysical Journal, 1995, 68, 1027–1044.
  • [4] FUNG Y.C., Biomechanics: mechanical properties of living tissues, 2nd ed., Springer, New York, 1993.
  • [5] HONDA H., Geometrical models for cells in tissues, Int. Rev. Cytol., 1983, 81, 191–248.
  • [6] HONDA H., MOCHIZUKI A., Formation and maintenance of distinctive cell patterns by coexpression of membranebound ligands and their receptors, Dev. Dyn., 2002, 223, 180–192.
  • [7] HUNTER P.J., MCCULLOCH A.D., TER KEURS H.E., Modelling the mechanical properties of cardiac muscle, Prog. Biophys. Mol. Biol., 1998, 69, 289–331.
  • [8] HUYGHE J.M., ARTS T., VAN CAMPEN D.H., RENEMAN R.S., Porous medium finite element model of the beating left ventricle, Am. J. Physiol., 1992, 262, H1256–1267.
  • [9] ROBINSON T.F., GERACI M.A., SONNENBLICK E.H., FACTOR S.M., Coiled perimysial fibers of papillary muscle in rat heart: morphology, distribution, and changes in configuration, Circ. Res., 1988, 63, 577–592.
  • [10] TSATURYAN A.K., IZACOV V.J., ZHELAMSKY S.V., BYKOV B.L., Extracellular fluid filtration as the reason for the viscoelastic behaviour of the passive myocardium, J. Biomech., 1984, 17, 749–755.
  • [11] SYS S.U., DE KEULENAER G.W., BRUTSAERT D.L., Reappraisal of the multicellular preparation for the in vitro physiopharmacological evaluation of myocardial performance, Adv. Exp. Med. Biol., 1998, 453, 441–450.
  • [12] KIRIAZIS H., GIBBS C.L., Papillary muscles split in the presence of 2,3-butanedione monoxime have normal energetic and mechanical properties, Am. J. Physiol., 1995, 269, H1685–H1694.
  • [13] OTT H.C., MATTHIESEN T.S., GOH S.-K., BLACK L.D., KREN S.M., NETOFF T.I., TAYLOR D.A., Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart, Nature Medicine, 2008, 14, 213–221.
  • [14] NEKOUZADEH A., PRYSE K.M., ELSON E.L., GENIN G.M., A simplified approach to quasi-linear viscoelastic modeling, J. Biomech., 2007, 40, 3070–3078.
  • [15] PRYSE K.M., NEKOUZADEH A., GENIN G.M., ELSON E.L., ZAHALAK G.I., Incremental mechanics of collagen gels: new experiments and a new viscoelastic model, Ann. Biomed. Eng., 2003, 31, 1287–1296.
  • [16] KOBELEV A.V., KOBELEVA R.M., PROTSENKO Y.L., BERMAN I.V., 2D rheological models for stress relaxation and creep in living soft tissues, Acta of Bioengineering and Biomechanics, 2005, 7.
  • [17] LINKE W.A., Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction, Cardiovascular Research, 2008, 77, 637–648.
  • [18] BUSTAMANTE C., MARKO J.F., SIGGIA E.D., SMITH S., Entropic elasticity of lambda-phage DNA, Science, 1994, 265, 1599–1600.
  • [19] MARKO J.F., SIGGIA E.D., Statistical mechanics of supercoiled DNA, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat Interdiscip Topics, 1995, 52, 2912–2938.
  • [20] LINKE W.A., FERNANDEZ J.M., Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium, J. Muscle Res. Cell. Motil., 2002, 23, 483–497.
  • [21] NAG A.C., Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution, Cytobios, 1980, 28, 41–61.
  • [22] WALKER C.A., SPINALE F.G., The structure and function of the cardiac myocyte: a review of fundamental concepts, J. Thorac Cardiovasc. Surg., 1999, 118, 375–382.
  • [23] LIVERSAGE A.D., HOLMES D., KNIGHT P.J., TSKHOVREBOVA L., TRINICK J., Titin and the sarcomere symmetry paradox, J. Mol. Biol., 2001, 305, 401–409.
  • [24] TSUTSUI H., TAGAWA H., KENT R.L., MCCOLLAM P.L., ISHIHARA K., NAGATSU M., COOPER G.T., Role of microtubules in contractile dysfunction of hypertrophied cardiocytes, Circulation, 1994, 90, 533–555.
  • [25] PAGE E., SOLOMON A.K., Cat heart muscle in vitro. I. Cell volumes and intracellular concentrations in papillary muscle, J. Gen. Physiol., 1960, 44, 327–344.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBD-0003-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.