PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectroscopic techniques in the study of human tissues and their components. Part I, IR spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among the currently used methods of monitoring human tissues and their components many types of research are distinguished. These include spectroscopic techniques. The advantage of these techniques is the small amount of sample required, the rapid process of recording the spectra, and most importantly in the case of biological samples - preparation of tissues is not required. In this work, vibrational spectroscopy: ATR-FTIR and Raman spectroscopy will be used. Studies are carried out on tissues: tendons, blood vessels, skin, red blood cells and biological components: amino acids, proteins, DNA, plasma, and deposits.
Rocznik
Strony
101--115
Opis fizyczny
Bibliogr. 88 poz., rys., tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] JACKSON M., MANTSCH H.H., FTIR spectroscopy in the clinical sciences, [in:] Biomedical Application of Spectroscopy. Advances in Spectroscopy, Wiley&Sons, Chichester, UK, 1996, 25, 185–215.
  • [2] TAMM L.K., TATULIAN S.A., Infrared spectroscopy of proteins and peptides in lipid bilayers, Quart. Rev. Biophys., 1997, 30, 365–429.
  • [3] MILES H.T., FRAZIER J., Infrared spectroscopy of polynucleotides in the carbonyl region in water solution: A.U systems, Biochemistry, 1978, 17, 2920–2927.
  • [4] TSUBOI M., Infrared spectra and secondary structure of deoxyrybonucleic acid, Progr. Theoret. Phys., 1961, 17, 99–107.
  • [5] TAILLANDIER E., LIQUIER J., GHOMI M., Conformational transitions of nucleic acids studied by IR and Raman spectroscopies, J. Mol. Struct., 1989, 214, 185–211.
  • [6] TAILLANDIER E., LIQUIER J., Infrared spectroscopy of DNA, Methods Enzymol., 1992, 211, 307–335.
  • [7] PEVSNER A., DIEM M., Infrared Spectroscopic Studies of Major Cellular Components. Part II: The Effect of Hydration on the Spectra of Nucleic Acids, Appl. Spectrosc., 2001, 55, 1502–1505.
  • [8] BANYAY M., SARKAR M., GRÄSLUND A., A library of IR bands of nucleic acids in solution, Biophys. Chem., 2003, 104, 477–488.
  • [9] LEE S.L., DEBENEDETTI P.G., ERRINGTON J.R., A Calorimetric and Spectroscopic study of DNA at low hydration, J. Phys. Chem. B, 2004, 108, 3098–3106.
  • [10] HARMOUCHI M., ALBISER G., PREMILAT S., Changes of hydration during conformational transitions of DNA, Eur. Biophys. J., 1990, 19, 87–89.
  • [11] MAKAROV V., PETTITT B.M., FEIG M., Solvation and Hydration of Proteins and Nucleic Acids: A Theoretical View of Simulation and Experiment, Acc. Chem. Res., 2002, 35, 376–384.
  • [12] KOSZTIN D., GUMPORT R., SCHULTEN K., Probing the role of structural water in a duplex oligodeoxyribonucleotide containing a water-mimicking base analog, Nucleic Acids Res., 1999, 27, 3550–3556.
  • [13] BLOOMFIELD V.A., CROTHERS D.M., TINOCO J., HEARST J.E., WEMMER, D.E., KOLLMAN P.A., TURNER D.H., Nucleic Acids: Structures, Properties and Functions, University Science Books, 2000, 476–487.
  • [14] KOPKA M.L., FRATINI A.V., DREW H.R., DICKERSON R.E., Ordered Water Structure around a B-DNA dodecamer. A quantitative study, J. Mol. Biol., 1983, 163, 129–146.
  • [15] SAENGER W., Structure and Dynamics of Water Surrounding Biomolecules, Ann. Rev. Biophys., 1987, 16, 93–114.
  • [16] VLIEGHE D., TURKENBURGB J.P., Van MEERVELTA L., B-DNA at atomic resolution reveals extended hydration patterns, Acta Crystallogr. D Biol. Crystallogr., 1999, 55, 1495–1502.
  • [17] FALK M., POOLE G.A., GOYMOUR C.G., Infrared study of the state of water in the hydration shell of DNA, Can. J. Chem., 1970, 48, 1536–1542.
  • [18] FEIG M., PETTITT M., Modeling High-resolution Hydration Patterns in Correlation with DNA Sequence and Conformation, J. Mol. Biol., 1999, 286, 1075–1095.
  • [19] BERMAN H.M., Hydration of DNA, Curr. Opin. Struc. Biol., 1991, 1, 423–427.
  • [20] WHELAN D.R., BAMBERY K.R., HERAUDM P., TOBIN M.J., DIEM M., McNAUGHTON D, WOOD B.R., Monitoring the reversible B to A-like transition of DNA in eukaryotic cells using Fourier transform infrared spectroscopy, Nucleic Acids Res., 2011, 39, 13, 5439–5448.
  • [21] FALK M., HARTMAN K., LORD K., Hydration of Deoxyribonucleic Acid. II. An Infrared Study, J. Am. Chem. Soc., 1963, 85, 4, 387–391.
  • [22] DUGUID J., BLOOMFIELD V.A., BENEVIDES J., THOMAS Jr. G.J., Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd, Biophys. J., 1993, 65, 5, 1916–1928.
  • [23] HACKL E.V., KORNILOVA S.V., KAPINOS L.E., ANDRUSHCHENKO V.V., GALKIN V.L., GRIGORIEV D.N., BLAGOI Yu.P., Study of Ca2+, Mn2+ and Cu2+ binding to DNA in solution by means of IR spectroscopy, J. Mol. Struct., 1997, 408–409, 229–232.
  • [24] AHMAD R., ARAKAWA H., TAJMIR-RIAHI H.A., A Comparative Study of DNA Complexation with Mg(II) and Ca(II) in Aqueous Solution: Major and Minor Grooves Bindings, Biophys. J., 2003, 84, 2460–2466.
  • [25] TAILLANDIER E., LIQUIER J., TABOURY J.A., Infrared spectral studies of DNA conformations, [in:] Advances in Infrared and Raman Spectroscopy, R.J.H. Clark, R.E. Hester (eds.), Wiley-Heyden, New York, 1985, 65–114.
  • [26] ALEX S., DUPUIS P., FTIR and Raman investigation of cadmium binding by DNA, Inorg. Chim. Acta, 1989, 157, 271–281.
  • [27] TAJMIR-RIAHI H.A., NAOUI M., AHMAD R., The effects of Cu2+ and Pb2+ on the solution structure of calf thymus DNA: DNA condensation and denaturation studied by Fourier transform IR difference spectroscopy, Biopolymers, 1993, 33, 1819–1827.
  • [28] OUAMEUR A.A., ARAKAWA H., AHMAD R., NAOUI M., TAJMIR-RIAHI H.A., A Comparative study of Fe(II) and Fe(III) interactions with DNA duplex: major and minor grooves bindings, DNA Cell. Biol., 2005, 24, 394–401.
  • [29] MERLIN J.C., THOMAS E.W., PETIT G. J., Resonance Raman study of phenylhydrazonopropanedinitriles, Can. J. Chem., 1985, 63, 1840–1844.
  • [30] OLSZTYŃSKA S., KOMOROWSKA M., VRIELYNCK L., DUPUY N., Vibrational spectroscopic study of L-phenylalanine: Effect of pH, Appl. Spectrosc., 2001, 55, 901–907.
  • [31] WALLACH J., Les enzymes, Nathan Ed., Paryż, 1997.
  • [32] BARBOIU M., GUIZARD C., LUCA C., ALBU B., HOVNANIAN N., PALMERI J., A new alternative to amino acids transport: facilitated transport of L-phenylalanine by hybrid siloxane membranes containing a fixed site macrocyclic complexant, J. Membrane Sci., 1999, 161, 193–206.
  • [33] DAWSON R.M.C., ELLIOTT D.C., ELLIOTT W.H., JONES K.M., Data for Biochemical Research, 3 ed., Oxford Science Publications, 1986.
  • [34] RAJKUMAR B.J.M., RAMAKRISHNAN V., RAJARAM R.K., Infrared and Raman spectra of DL-aspartic acid nitrate monohydrate, Spectrochim. Acta Part A, 1998, 54, 1527–1532.
  • [35] MUTA H., KOJIMA R., KAWAUCHI S., TACHIBANA A., SATOH M., Ion-specificity for hydrogen-bonding hydration of polymer: an approach by ab initio molecular orbital calculations, J. Mol. Struct. Theochem., 2001, 539, 219–236.
  • [36] OLSZTYŃSKA-JANUS S., SZYMBORSKA K., KOMOROWSKA M., LIPIŃSKI J., Usefulness of spectroscopy for biomedical engineering, Acta Bioeng. Biomech., 2008, 10, 3, 45–49.
  • [37] OLSZTYŃSKA S., DOMAGALSKA B.W., KOMOROWSKA M., Aggregation of L-phenylalanine amino acid, [in:] Surfactants and dispersed systems in theory and practice, K.A. Wilk (ed.), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, Poland, 2003, 405–409.
  • [38] OLSZTYŃSKA-JANUS S., SZYMBORSKA K., KOMOROWSKA M., LIPIŃSKI J., Conformational changes of L-phenylalanine – near infrared-induced mechanism of dimerization: B3LYP studies, J. Mol. Struct. Theochem., 2009, 911, 1–3, 1–7.
  • [39] TANAKA M., KANEKO F., KOKETSU T., NAKAGAWA K., YAMADA T., Fragmentation and dimerization of aliphatic amino acid films induced by vacuum ultrafiolet irradiation, Radiat. Phys. Chem., 2008, 77, 1164–1168.
  • [40] OLSZTYŃSKA-JANUS S., DUPUY N., VRIELYNCK L., KOMOROWSKA M., Water evaporation analysis of L-phenylalanine from initial aqueous solutions to powder state by vibrational spectroscopy, Appl. Spectrosc., 2006, 60, 9, 1040–1053.
  • [41] KUZNETSOVA S.E., BURYAK K.A., Experimental and theoretical investigation of amino acids dimers and associates adsorption on carbon surface, Colloids Surf. A Physicochem. Eng. Aspects, 2011, 383, 73–79.
  • [42] SOKRATES G., Infrared Characteristic Group Frequencies. Tables and Charts, John Wiley and Sons, New York, 1994.
  • [43] COLTHUP N.B., DALY L.H., WIBERLEY S.E., Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, New York, 1990.
  • [44] STEPANIAN S.G., REVA I.D., RADCZENKO E.D., SHEINA G.G., Infrared spectra of benzoic acid monomers and dimers in argon matrix, Vib. Spectrosc., 1996, 11, 123–133.
  • [45] KISS J.T., FELFOLDI K., PAKSI Z., PALINKO I., Structureforming properties of 3-furylpropenoic acid derivatives in solution and in the solid state, J. Mol. Struct., 2003, 651–
  • [46] PARKER F.S., Application of infrared Raman and resonance Raman spectroscopy in biochemistry, Plenum Press, New York, 1983.
  • [47] BARTH A., The infrared absorption of amino acid side chains, Prog. Biophys. Mol. Biol., 2000, 74, 141–173.
  • [48] HARRIS P.I., CHAPMAN D., Does Fourier-transform infrared spectroscopy provide useful information on protein structures?, Trends. Biochem. Sci., 1992, 17, 328–333.
  • [49] JACKSON M., MANTSCH H.H., The use and misuse of FTIR spectroscopy in the determination of protein structure, Crit. Rev. Biochem. Mol. Biol., 1995, 30, 95–120.
  • [50] GOLDBERG M.E., CHAFFOTTE A.F., Undistorted structural analysis of soluble proteins by attenuated total reflectance infrared spectroscopy, Protein Sci., 2005, 14, 2781–2792.
  • [51] GRDADOLNIK J., Saturation effects in FTIR spectroscopy: intensity of Amide I and Amide II bands in protein spectra, Acta Chim. Slov., 2003, 50, 777–788.
  • [52] GRDADOLNIK J., MARÉCHAL Y., Bovine serum albumin observed by infrared spectrometry. I. Methodology, structural investigation, and water uptake, Biopolymers (Biospectroscopy), 2001, 62, 40–53.
  • [53] PEVSNER A., DIEM M., Infrared spectroscopic studies of major cellular components. Part I: The effects of hydration on the spectra of proteins, Appl. Spectrosc., 2001, 55, 788–793.
  • [54] WANG S.-L., WEI Y.-S., LIN S.-Y., Subtractive similarity method used to study the infrared spectra of proteins in aqueous solution, Vib. Spectr., 2003, 31, 313–319.
  • [55] SMITH B.M., OSWALD L., FRANZEN S., Single-pass attenuated total reflection Fourier transform infrared spectroscopy for the prediction of protein secondary structure, Anal. Chem., 2002, 74, 3386–3391.
  • [56] MARTIN I., GOORMAGHTIGH E., RUYSSCHAERT J.-M., Attenuated total reflection IR spectroscopy as a tool to investigate the orientation and tertiary structure changes in fusion proteins, Biochim. Biophys. Acta, 2003, 1614, 97–103.
  • [57] FABIAN H., MÄNTELE W., Infrared spectroscopy of proteins, [in:] Handbook of Vibrational Spectroscopy, Chalmers J.M., Griffiths P.R. (eds.), John Wiley&Sons, Chichester, UK, 2002, 3399–3425.
  • [58] FING A.L., Protein aggregation: folding aggregates inclusion bodies and amyloid, Fold. Des., 1998, 3, R9–R23.
  • [59] DONG A., RANDOLPH T.W., CARPENTER J.F., Entrapping intermediates of thermal aggregation in a-helical proteins with low concentration of guanidine hydrochloride, J. Biol. Chem., 2000, 275, 27689–27693.
  • [60] LAZAREV Y.A., GRISHKOVSKY B.A., KHROMOVA T.B., LAZAREVA A.V., GRECHISHKO V.S., Bound water in the collagen-like triple-helical structure, Biopolymers, 1992, 32, 189–195.
  • [61] JAKOBSEN R.J., WASACZ F.M., BRASCH J.W., SMITH K.B., The relationship of bound water to the IR amide I bandwidth of albumin, Biopolymers, 1986, 25, 639–654.
  • [62] POWELL J.R., WASACZ F.M., JAKOBSEN R.J., An algorithm for the reproducible spectral subtraction of water from the FTIR spectra of proteins in dilute solutions and adsorbed monolayers, Appl. Spectrosc., 1986, 40, 339–344.
  • [63] DOUSSEAU F., THERRIEN M., PÉZOLET M., On the spectral subtraction of water from the FT-IR spectra of aqueous solutions of proteins, Appl. Spectrosc., 1989, 43, 538–542.
  • [64] DONG A., MEYER J.D., BROWN J.L., MANNING M.C., CARPENTER J.F., Comparative FTIR and CD spectroscopic analysis of alpha α1-proteinase inhibitor and ovalbumin in aqueous solution, Arch. Biochem. Biophys., 2000, 383, 148–155.
  • [65] YAN Y.-B., WANG Q., HE H.-W., ZHOU H.-M., Protein Thermal Aggregation Involves Distinct Regions: Sequential Events in the Heat-Induced Unfolding and Aggregation of Hemoglobin, Biophys. J., 2004, 86, 1682–1690.
  • [66] PETIBOIS C., DELERIS G., Applications of FT-IR spectrometry to plasma contents analysis and monitoring, Vib. Spectrosc., 2003, 32, 129–136.
  • [67] PETIBOIS C., CAZORLA G., GIN H., DELERIS G., Differentiation of populations with different physiologic profiles by plasma Fourier-transform infrared spectra classification, J. Lab. Clin. Med., 2001, 137, 184–190.
  • [68] ERUKHIMOVITCH V., TALYSHINSKY M., SOUPRUN Y., HULEIHEL M., FTIR spectroscopy examination of leukemia patients plasma, Vib. Spectrosc., 2006, 40, 40–46.
  • [69] STAIB A., DOLENKO B., FINK D.J., FRUH J., NIKULIN A.E., OTTO M., PESSIN-MINSLEY M.S., QUARDER O., SOMORJAI R., THIENEL U., WERNER G., Disease pattern recognition testing for rheumatoid arthritis using infrared spectra of human serum, Clin. Chim. Acta, 2001, 308, 79–89.
  • [70] BARTH A., Infrared Spectroscopy of Proteins, Biochim. Biophys. Acta, 2007, 1767, 1073–1101.
  • [71] PETIBOIS C., DELERIS G., Oxidative stress effects on erythrocytes determined by FT-IR spectrometry, Analyst, 2004, 129, 912–916.
  • [72] FIORINI R., CURATOLA G., KANTAR A., GORGI P.L., BERTOLI E., FANFANI F., Steady state fluorescence polariazation and Fourier transform infrared spectroscopy studies on membranes of functionally senescent human erythrocytes, Biochem. Int., 1990, 20, 715–724.
  • [73] TAO P., AIHONG P., WENJIE H., Model Optimization and Stability of Hemoglobin Analysis in Human Soluble Blood Samples by FTIR/ATR Spectroscopy, Appl. Mech. Materials, 2011, 55–57, 1168–1171.
  • [74] YIN H., PAN T., TIAN P.L., The rapid quantitative analysis for the human blood hemoglobin applied through the FTIR/ATR spectrum, Chin. J. Spectrosc. Lab., 2009, 26, 2, 431–436.
  • [75] LIU K.-Z., BOSE R., MANTSCH H.H., Infrared spectroscopic study of diabetic platelets, Vib. Spectrosc., 2002, 28, 131–136.
  • [76] CROWE J.H., TABLIN F., TSVETKOVA N., OLIVER A.E., WALKER N., CROWE L.M., Are Lipid Phase Transitions Responsible for Chilling Damage in Human Platelets?, Cryobiology, 1999, 38, 180–191.
  • [77] KLEIREN E., RUYSSCHAERT M.J., GOORMAGHTIGH E., RAUSSENS V., Development of a quantitative and conformation-sensitive ATR-FTIR biosensor for Alzheimer’s disease: The effect of deuteration on the detection of the Aβ peptide, Spectroscopy, 2010, 24, 61–66.
  • [78] AAMOUCHE A., GOORMAGHIGH E., FTIR-ATR biosensor based on self-assembled phospholipids surface: Haemophilia factor VIII diagnosis, Spectroscopy, 2008, 22, 223–234.
  • [79] TRAFIDŁO T., GASZYŃSKI T., NIRS – spektroskopia bliskiej podczerwieni jako wielofunkcyjna metoda monitorowania miejscowej oksygenacji tkankowej w anestezjologii i ratownictwie, Anestezjologia i Ratownictwo, 2009, 351–359.
  • [80] RAMAKRISHNAN M., JENSEN P.H., MARSH D., Association of α-Synuclein and Mutants with Lipid Membranes: Spin-Label ESR and Polarized IR, Biochemistry, 2006, 45, 3386–3395.
  • [81] THOMZIG A., SPASSOV S., FRIEDRIECH M., NAUMANN D., BEEKES M., Discriminating scrapie and bovine spogiform encephalopathy isolates by infrared spectroscopy of pathological prion protein, J. Biol. Chem., 2004, 279, 33847–33854.
  • [82] PERSHKO N., BURLAKA D., KORIZKAYA L., LEVTCHENKO O., PELEVIN S., SIDORENKO M., The IR-spectroscopy of blood as a possible diagnostic approach for breast cancer and fibroadenomatous diagnostics, Annales Universitatis Marie Curie-Skłodowska Lublin – Polonia, XXI, 2008, 2, 42.
  • [83] CHEN Y.J., HSIEH Y.W., CHENG Y.D., LIAO C.C., Study on the secondary structure of protein in amide I band from human colon cancer tissue by Fourier-transform infrared spectroscopy, Chang Gung Med. J., 2001, 24, 541–546.
  • [84] FUJIOKA N., MORIMOTO Y., ARAI T., KIKUCHI M., Discrimination between normal and malignant human gastric tissues by Fourier transform infrared spectroscopy, Cancer Det. Prev., 2004, 28, 32–36.
  • [85] ARGOV S., SAHU R.K., BERNSHTAIN E., SALMAN A., SHOHAT G., ZELIG U., MORDECHAI S., Inflamatory bowel diseases as an intermediate stage between normal and cancer: A FTIR microspectroscopy approach, Biopolymers, 2004, 75, 5, 384–392.
  • [86] KHANMOHAMMADI M., ANSARI M.A., BAGHERI GARMARUDI A., HASSANZADEH G., GAROOSI G., Cancer Diagnosis by Discrimination between Normal and Malignant Human Blood Samples Using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy, Cancer Invest, 2007, 25, 397–404.
  • [87] LYMAN D.J., MURRAY-WIJELATH J., Fourier Transform Infrared Attenuated Total Reflection Analysis of Human Hair: Comparison of Hair from Breast Cancer Patients with Hair from Healthy Subjects, Appl. Spectrosc., 2005, 59, 1, 26–32.
  • [88] YANO K., SAKAMOTO Y., HIROSAWA N., TONOOKA S., KATAYAMA H., KUMAIDO K., SATOMI A., Applications of Fourier transform infrared spectroscopy, Fourier transform infrared microscopy and near infrared spectroscopy to cancer research, Spectroscopy, 2003, 17, 2–3, 315–321.653, 253–258.1990, 19, 87–89.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBD-0003-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.