PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of body warming on respiratory system stress recovery in the rat

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanical characteristics of respiratory system tissues include visco-elastic behaviour. In particular, after mechanical unloading, i.e., a reduction in respiratory system volume, the lower stress achieved slowly increases, approaching higher constant value, due to visco-elastic stress recovery. We performed experiments in which constant deflation flow arrest was applied in rats to study the successive pressure-time course, which defines the visco-elastic stress recovery. To investigate the possible effects of temperature changes, measurements were performed at two body temperatures, 36.6 +- 0.3 and 39.0 +- 0.1 degrees C. We found that stress recovery is reduced by increasing body temperature. Pressure-time curves after deflation arrest were fitted by specific mathematical model, and a good agreement was found. Model parameters exhibited significant changes with body temperature variations, suggesting that temperaturedependent micro-structural rearrangement phenomena in the tissues of alveolar wall were involved in the stress recovery decrement with body temperature increase. Thus, visco-elastic phenomena in respiratory system tissues of mammals exhibit temperature dependence. The stress recovery changes with body temperature suggest that expiration is expected to be easier in condition of physiological body temperature than in the case of increased temperature.
Rocznik
Strony
59--66
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] FAFFE D.S., ZIN W.A., Lung parenchymal mechanics in health and disease, Physiol. Rev., 2009, Vol. 89, Iss. 3, 759–775.
  • [2] HUGHES R., MAY A.J., WIDDICOMBE J.G., Stress relaxation in rabbits’ lungs, J. Physiol., 1959, Vol. 146, Iss. 1, 85–97.
  • [3] KOCHI T., BATES J.H.T., OKUBO S., PETERSEN E.S., MILICEMILI J., Respiratory mechanics determined by flow interruption during passive expiration in cats, Resp. Physiol., 1989, Vol. 78, Iss. 2, 243–252.
  • [4] RUBINI A., GASPERETTI A., CATENA V., del MONTE D., Effects of acute blood volume expansion on respiratory mechanics in the rat, Respiration, 2010, Vol. 79, Iss. 6, 497–505.
  • [5] RUBINI A., The effect of body warming on respiratory mechanics in rat, Respir. Physiol. Neurobiol., 2011, Vol. 175, Iss. 2, 255–260.
  • [6] EISSA N.T., RANIERI V.M., CORBEIL C., CHASSÉ M., ROBATTO F.M., BRAIDY J., MILIC-EMILI J., Analysis of behavior of respiratory system in ARDS patients: effects of flow, volume and time, J. Appl. Physiol., 1991, Vol. 70, Iss. 6, 2719–2729.
  • [7] TANTUCCI C., CORBEIL C., CHASSE’ M., ROBATTO F.M., NAVA S., BRAIDY J., MATAR N., MILIC-EMILI J., Flow and volume dependence of respiratory system flow resistance in patients with adult respiratory distress syndrome, Am. Rev. Resp. Dis., 1992, Vol. 145, Iss. 2, pt 1, 355–360.
  • [8] GUERIN C., COUSSA M.L., EISSA N.T., CORBEIL C., CHASSE’ M., BRAIDY J., MATAR N., MILIC-EMILI J., Lung and chest wall mechanics in mechanically ventilated COPD patients, J. Appl. Physiol., 1993, Vol. 74, Iss. 4, 1570–1580.
  • [9] XISTO D.G., FARIAS L.L., FERREIRA H.C., PICANCO M.R., AMITRANO D., LAPA E., SILVA J.R., NEGRI E.M., MAUAD T., CARNIELLI D., SILVA L.F., CAPELOZZI V.L., FAFFE D.S., ZIN W.A., ROCCO P.R., Lung parenchyma remodeling in a murine model of chronic allergic inflammation, Am. J. Resp. Crit. Care Med., 2005, Vol. 171, Iss. 8, 829–837.
  • [10] SILVA P.L., PASSARO C.P., CAGIDO V.R., BOZZA M., DOLHNIKOFF M., NEGRI E.M., MORALES M.M., CAPELOZZI V.L., ZIN W.A., ROCCO P.R., Impact of lung remodelling on respiratory mechanics in a model of severe allergic inflammation, Respir. Physiol. Neurobiol., 2008, Vol. 160, Iss. 3, 239–248.
  • [11] RUBINI A., IL-6 increases the airway resistance in the rat, Cytokine, 2010, Vol. 51, Iss. 3, 266–273.
  • [12] SHARP J.T., HAMMOND M.D., Pressure-volume relationships, [in:] R.G. Crystal, T.B. West (eds.), The lung: scientific foundations, Vol. 2, New York, Raven Press, 1991, 839–854.
  • [13] FREDBERG J.J., BUNK D., INGENITO E., SHORE S.A., Tissue resistance and the contractile state of lung parenchyma, J. Appl. Physiol., 1993, Vol. 74, Iss. 3, 1387–1397.
  • [14] SUKI B., BARABASI A.L., LUTCHEN K.R., Lung tissue viscoelasticity: a mathematical framework and its molecular basis, J. Appl. Physiol., 1994, Vol. 76, Iss. 6, 2749–2759.
  • [15] WEINBERG P.D., WINLOVE C.P., PARKER K.H., The distribution\ of water in arterial elastin: effects of mechanical stress, osmotic pressure, and temperature, Biopolymers, 1995, Vol. 35, Iss. 2, 161–169.
  • [16] CHEN S.S., HUMPHREY J.D., Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37 degrees C, J. Biomech., 1998, Vol. 31, Iss. 3, 211–216.
  • [17] BATES J.H.T., ROSSI A., MILIC-EMILI J., Analysis of the behaviour of the respiratory system with constant inspiratory flow, J. Appl. Physiol., 1985, Vol. 58, Iss. 6, 1840–1848.
  • [18] BATES J.H.T., BACONNIER P., MILIC-EMILI J., A theoretical analysis of interrupter technique for measuring respiratory mechanics, J. Appl. Physiol., 1988, Vol. 64, Iss. 5, 2204–2214.
  • [19] D’ANGELO E., CALDERINI E., TORRI G., ROBATTO M., BONO D., MILIC-EMILI J., Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time, J. Appl. Physiol., 1989, Vol. 67, Iss. 6, 2556–2564.
  • [20] SIMILOWSKY T., LEVY P., CORBEIL C., ALBALA M., PARIENTE R., DERENNE J.P., BATES J.H., JONSON B., MILIC-EMILI J., Viscoelastic behaviour of lung and chest wall in dogs determined by flow interruption, J. Appl. Physiol., 1989, Vol. 67, Iss. 6, 2219–2229.
  • [21] RUBINI A., CARNIEL E.L., PARMAGNANI A., NATALI A.N., Flow and volume dependence of rat airway resistance during constant flow inflation and deflation, Lung, 2011, Vol. 189, Iss. 6, 511–518.
  • [22] CHANG H.K., MORTOLA J.P., Fluid dynamic factors in tracheal pressure measurements, J. Appl. Physiol., 1981, Vol. 51, Iss. 1, 218–225.
  • [23] RETA G.S., RIVA J.A., PIRIZ H., MEDEIROS A.S., ROCCO P.M.R., ZIN W.A., Effects of halotane on respiratory mechanics and lung’s hystopathology in normal rat, Br. J. Anaesth, 2000, Vol. 84, Iss. 3, 372–377.
  • [24] RUBINI A., The effect of N-Nitro-L-Arginine methyl ester, a nitric oxide synthase inhibitor, on respiratory mechanics in rats, Respiration, 2011, Vol. 82, Iss. 5, 468–475.
  • [25] BATES J.H.T., HUNTER I.W., SLY P.D., OKUBO S., FILIATRAULT S., MILIC-EMILI J., Effect of valve closure time on the determination of respiratory resistance by flow interruption, Med. Biol. Eng. Comput., 1987, Vol. 25, Iss. 2, 136–140.
  • [26] PERATONER A., NASCIMENTO C.S., SANTANA M.C.E., CADETE R.A., NEGRI E.M., GULLO A., ROCCO P.R., ZIN W.A., Effects of propofol on repiratory mechanics and lung hystology in normal rats, Br. J. Anaesth., 2004, Vol. 92, Iss. 5, 737–740.
  • [27] LEMPERT J., MACKLEM P.T., Effect of temperature on rabbit ung surfactant and pressure-volume hysteresis, J. Appl. Physiol., 1971, Vol. 31, Iss. 3, 380–385.
  • [28] PEIPER U., What kind of signals are perceived by vascular smooth muscle, including physical factors?, J. Cardiovasc. Pharmacol., 1984, Vol. 6, Suppl. 2, S328–335.
  • [29] Mc FADDEN Jr E.R., INGRAM Jr R.H., Thermal factors in respiratory mechanics, [in:] A.P. Fishman (ed.), Handbook of Physiology, Section 3: The Respiratory System, vol. III: Mechanics of Breathing, part 2, Bethesda (ML), American Physiological Society, 1986, 703–709.
  • [30] COMLEY K., FLECK N.A., A micromechanical model for the Young’s modulus of adipose tissue, International Journal of Solids and Structures, 2010, Vol. 47, Iss. 6, 2982–2990.
  • [31] SALDIVA P.H.N., CARDOSO W.V., CALDEIRA M.P.R., ZIN W.A., Mechanics in rats by end-inflation occlusion and single- breath methods, J. Appl. Physiol., 1987, Vol. 63, Iss. 5, 1711–1718.
  • [32] MARTINS M.A., SALDIVA P.H., CALDEIRA M.P., VIEIRA J.E., ZIN W.A., Respiratory system, lung and chest wall mechanics in guinea pigs, Braz. J. Med. Biol. Res., 1988, Vol. 21, Iss. 2, 353–363.
  • [33] D’ANGELO E., ROBATTO F.M., CALDERINI E., TAVOLA M., BONO D., TORRI G., MILIC-EMILI J., Pulmonary and chest wall mechanics in anesthetized paralyzed humans, J. Appl. Physiol., 1991, Vol. 70, Iss. 6, 2602–2610.
  • [34] POLESE G., ROSSI A., APPENDINI L., BRANDI G., BATES J.H.T., BRANDOLESE R., Partitioning of respiratory mechanics in mechanically ventilated patients, J. Appl. Physiol., 1991, Vol. 71, Iss. 6, 2425–2433.
  • [35] PELOSI P., CROCI M., RAVAGNAN I., VICARDI P., GATTINONI L., Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients, Chest, 1996, Vol. 109, Iss. 1, 144–151.
  • [36] NATALI A.N., CARNIEL E.L., PAVAN P.G., Constitutive modeling of inelastic behaviour of cortical bone, Med. Eng. Phys., 2008, Vol. 30, Iss. 7, 905–912.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBD-0003-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.