PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Correlations between structural and mechanical properties of human trabecular femur bone

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the author presents mathematical relationships between the structural and mechanical properties of cancellous human bone tissue obtained by experimental analysis of specimens. Bone tissue material can adjust its internal structure to the existing loading conditions. The mechanical properties affect the structural properties but changes in structural properties likewise cause changes in the mechanical properties of the tissue. In normal tissue, the processes of tissue construction, destruction, and reconstruction are mutually balanced and complementary; if that balance is disturbed, lesions can occur. Therefore, normal bone tissue and pathologically changed tissue (osteoporosis and osteoarthrosis) coming from the area of human femoral head were examined. The structural properties of cancellous tissue specimens were determined non-destructively for three-dimensional reconstructions with the use of modern micro-CT methods. The mechanical properties of the specimens were determined by an uniaxial compression test in three orthogonal directions. Next, in order to specify the compressive strength, a failure test was conducted in the direction perpendicular to the neck-shaft angle of the hip joint.
Rocznik
Strony
37--46
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] AN Y.H., DRAUGHN R.A., Mechanical testing of bone and bone–implant interface, CRC Press LLC, 2000.
  • [2] BAYRAKTAR H.H., MORGAN E.F., NIEBUR G.L., MORRIS G.E., WONG E.K., KEAVENY T.M., Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue, Journal of Biomechanics, 2004, 37, 27–35.
  • [3] BUCKWALTER J.A., MARTIN J.A., BROWN T.D., Perspectives on chondrocyte mechanobiology and osteoarthritis, Biorheology, 2006, 43(3–4), 603–609.
  • [4] BURR D., FORWOOD M., FYHRIE D., MARTIN R., SCHAFFLER M., TURNER C., Bone microdamage and skeletal fragility in osteoporotic and stress fractures, Journal of Bone and Mineral Research, 1997, 12, 6–15.
  • [5] CARBONARE L.D., VALENTI M.T., BERTOLDO F., ZANATTA M., ZENARI S., REALNI G., CASCIO V.L., GIANNINI S., Bone microarchitecture evaluated by histomorphometry, Mikron, 2005, 36, 609–616.
  • [6] CICHAŃSKI A., NOWICKI K., MAZURKIEWICZ A., TOPOLIŃSKI T., Investigation of statistical relationships between quantities describing bone architecture, its fractal dimensions and mechanical properties, Acta of Bioengineering and Biomechanics, 2010, 12(4), 69–77.
  • [7] COWIN S.C., Bone Mechanics Handbook, Boca Raton, FL, CRC Press, 2001.
  • [8] COWIN S.C., CARDOSO L., Fabric dependence of bone ultrasound, Acta of Bioengineering and Biomechanics, 2010, 12(2), 3–23.
  • [9] EVANS F.G., Mechanical properties of bone, Charles C. Thomas, Publisher, Springfield, Illinois, USA, 1973.
  • [10] FELDKAMP L.A., GOLDSTEIN S.A., PARFITT A.M., JESION G., KLEEREKOPER M., The direct examination of three-dimensional bone architecture in vitro by computed tomography, Journal of Bone and Mineral Research, 1989, 4, 3–11.
  • [11] GOULET R.W., GOLDSTEIN S.A., CIARELLI M.J., KUHN J.L., BROWN M.B., FELDKAMP L.A., The relationship between the structural and orthogonal compressive properties of trabecular bone, Journal of Biomechanics, 1994, 27, 375–389.
  • [12] HILDEBRAND T., LAIB A., MÜLLER R., DEQUEKER J., RÜEGSEGGER P., Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest and calcaneus, Journal of Bone and Mineral Research, 1999, 14(7), 1167–1174.
  • [13] HILDEBRAND T., RÜEGSEGGER P., A new method for the model independent assessment of thickness in three-dimensional images, Journal of Microscopy, 1997, 185, 67–75.
  • [14] HUISKES R., If bone is the answer, then what is the question? Journal of Anatomy, 2000, 197, 145–156.
  • [15] KABEL J., ODGAARD A., van RIETBERGEN B., HUISKES R., connectivity and the elastic properties of cancellous bone, Bone, 1999, 24(2), 115–120.
  • [16] KEAVENY T.M., PINILLA T.P., CRAWFORD R.P., Systematic and random errors in compression testing of trabecular bone, Journal of Orthopedic Research, 1997, 15, 101.
  • [17] KEUTTNER K.E., GOLDERG V.M., Osteorathritic Disorders, American Academy of Orthopedic Surgeons, Rosemont, 1995, 95–101.
  • [18] KLEEREKOPER M.W., The Bone and Mineral Manual, Academic Press, USA, 1999.
  • [19] LINDE F., HVID I., MADSEN F., The effect of specimen size and geometry on the mechanical behavior of trabecular bone, Journal of Biomechanics, 1992, 25, 359.
  • [20] NAZARIAN A., von STECHOW D., ZURAKOWSKI D., MULLER R., SNYDER B.D., Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis, Calcified Tissue International, 2008, 83, 368–379.
  • [21] NIKODEM A., ŚCIGAŁA K., Biomechanics of Physiological and Pathological Bone Structures, Principles of Osteoarthritis – Its Definition, Character, Derivation and Modality-Related Recognition, Bruce M. Rothschild (ed.), 2012.
  • [22] NIKODEM A., ŚCIGAŁA K., Impact of some external factors on the values of mechanical parameters determined in tests on bone tissue, Acta of Bioengineering and Biomechanics, 2010, 12(3), 85–93.
  • [23] ODGAARD A., Three dimensional methods for quantification of cancellous bone architecture, Bone, 1997, 20, 315–328.
  • [24] PARFITT A.M., DREZNER M.K., GLORIEUX F.H., KANIS J.A., MALLUCHE H., MEUNIEUR P.J., OTT S.M., RECKER R.R., Bone histomorphometry: standardization of nomenclature, symbols, and units, Journal of Bone and Mineral Research, 1987, 2, 595–611.
  • [25] RICE J.C., COWIN S.C., BOWMAN J.A., On the dependence of elasticity and strength of cancellous bone on apparent density, Journal of Biomechanics, 1988, 22, 155–168.
  • [26] TANAKA T., SAKURAI T., KASHIMA I., Structuring of parameters for assessing vertebral bone strength by star volume analysis using a morphological filter, Journal of Bone and Mineral Metabolism, 2001, 19, 150–158.
  • [27] TURNER C.H., BURR D.B., Basic biomechanical measurements of bone: A tutorial, Bone, 1993, 14, 595–608.
  • [28] WEINANS H., HUISKES R., GROOTENBOER H.J., The behavior of adaptive bone-remodeling simulation models, Journal of Biomechanics, 1992, 25(12), 1425–1441.
  • [29] WHITEHOUSE W.J., The quantitative morphology of anisotropic trabecular bone, Journal of Microscopy, 1974, 101, 153–168.
  • [30] YAMADA H., Strength of biological materials, Williams & Wilkins, Baltimore, MD, 1973.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBD-0003-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.