PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phenomenological evaluation of fatigue cracking of dental restorations under conditions of cyclic mechanical loads

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with microcracks in dental filling material and hard tissues of the teeth treated conservatively. Human teeth, removed due to orthodontic or surgical reasons, were the subject of those research studies. The studies have been conducted in vitro with the application of mastication simulator. It has been indicated that the number of cracks and the degree of their expansion increase with the number of load cycles. The number of microcracks of the filling material on the masticating surface is lower than in the deeper layers; however, they are more extensive. After applying a specified long load series a progressive increase of microcracks in the restoration material and their expansion in the contact zone with the dentine have been observed. It has been demonstrated that on the masticating surface the number of microcracks and their expansion were proportional to the number of load cycles.
Słowa kluczowe
Rocznik
Strony
9--17
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Faculty of Transport and Computer Science, University of Economics and Innovation in Lublin
Bibliografia
  • [1] SZAFRAN M., ROKICKI G., BOBRYK E., SZCZĘSNA B., Effect of filler’s surface treatment on mechanical properties of ceramic–polymer composites used in dentistry, Kompozyty (Composites), 2006, (6)3, 78–82.
  • [2] ANDRZEJCZUK M., LEWANDOWSKA M., KURZYDŁOWSKI K.J., Właściwości mechaniczne światłoutwardzalnych kompozytów zbrojonych mikro- i nanocząstkami, Kompozyty (Composites), 2005, (5)1, 75–79.
  • [3] CALHEIROS C.F., SADEK F.T., BOARO L.C.C., BRAGA R.R., Polymerization stress related to radiant exposure and its effect on microleakage of composite restorations, Journal of Dentistry, 2007, 35, 946–952.
  • [4] ROSIN M., URBAN A.D., GARTNER C., BERNHARDT O., SPLEITH C., MEYER G., Polymerization shrinkage–strain and microleakage in dentin–border cavites of chemical and lightcured restorative materials, Dental Materials, 2002, 18, 521–528.
  • [5] WILDER A.D. Jr, SWIFT E.J., MAY K.N. Jr, THOMPSON J.Y., McDOUGAL R.A., Effect of finishing technique on the microleakage and surface texture of resin-modified glassionomer restorative materials, Journal of Dentistry, 2000, 28, 367–373.
  • [6] FLEMING G.J.P., HAL D.P., SHORTALL A.C.C., BURKE F.J.T., Cuspal movement and microleakage in premolar teeth restored with posterior filling materials of varying reported volumetric shrinkage values, Journal of Dentistry, 2005, 33, 139–146.
  • [7] PIEMJAI M., WATANABE A., IWASAKI Y., NAKABAYASHI N., Effect of remaining demineralised dentine on dental microleakage accessed by a dye penetration: how to inhibit microleakage? Journal of Dentistry, 2004, 32, 495–501.
  • [8] BRAGA R.R., BOARO L.C.C., KURO T., AZEVEDO C.L.N., SINGER J.N., Influence of cavity dimensions and their derivatives (volume and ‘C’ factor) on shrinkage stress development and microleakage of composite restorations, Dental Materials, 2006, 2, 818–823.
  • [9] ZARONE F., APICELLA D., SORRENTINO R., FERRO V., AVERSA R., APICELLA A., Influence of tooth preparation design on the stress distribution in maxillary central incisors restored by means of alumina porcelain veneers. A 3D finite element analysis, Dental Materials, 2005, 21, 1178–1188.
  • [10] VERSLUIS A., TANTBIROJN D., PINTADO M.R., DELONGA R., DOUGLAS W.H., Residual shrinkage stress distributions in molars after composite restoration, Dental Materials, 2004, 20, 554–564.
  • [11] ŚLAK B., AMBROZIAK A., STRUMBAN E., MAEV R. Jr, Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure, Acta of Bioengineering and Biomechanics, 2011, (13)1, 65–70.
  • [12] HE L.H., SWAIN M.V., Understanding the mechanical behavior of human enamel from its structural and compositional characteristics, Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 18–29.
  • [13] HAYASAKI H., OKAMOTO A., IWASE Y., YAMASAKI Y., NAKATA M., Occlusal contact area of mandibular teeth during lateral excursion, International Journal of Prosthodontics, 2004, 17, 72–76.
  • [14] AUSIELLO P., RENGO S., DAVIDSON C., WATTS D., Stress distributions in adhesively cemented ceramic and resin–composite Class II inlay restorations: a 3D–FEA study, Dental Materials, 2004, 20, 862–872.
  • [15] STEINER M., MITSIAS M.E., LUDWIG K., KERN M., In vitro evaluation of a mechanical testing chewing simulator, Dental Materials, 2009, 25, 494–499.
  • [16] STAPPERT C.F.J., CHITMONGKOLSUK S., NELSON R., SILVA F.A., ATTE W., STRUB J.R., Effect of mouth-motion fatigue and thermal cycling on the marginal accuracy of partial coverage restorations made of various dental materials, Dental Materials, 2008, 24, 1248–1257.
  • [17] SALLES C., TARREGA A., MIELLE P., MARATRAY J., GORRIA P., LIABOEUF J., LIODENOT J.J., Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment, Journal of Food Engineering, 2007, 82, 189–198.
  • [18] MEHL C., SCHEIBNER S., LUDWIG K., KERN M., Wear of composite resin veneering materials and enamel in a chewing simulator, Dental Materials, 2007, 23, 1382–1389.
  • [19] HUNICZ J., NIEWCZAS A., KORDOS P., PIENIAK D., Experimental test stand for analysis of composite dental fillings degradation, Maintenance and Reliability (Eksploatacja i Niezawodność), 2007, (34)2, 37–43.
  • [20] GROSFELDOWA O., Fizjologia narządu żucia, Wyd. Lekarskie PZWL, Warszawa, 1981.
  • [21] KORDOS P., HUNICZ J., NIEWCZAS A., The station designed for accelerated fatigue tests of dental materials, Maintenance and Reliability (Eksploatacja i Niezawodność), 2009, (41)1, 63–69.
  • [22] RODRIGUES S.A. Jr, SCHERRER S.S., FERRACANE J.L., ALVARO D.B., Microstructural characterization and fracture behavior of a microhybrid and a nanofill composite, Dental Materials, 2008, 24, 1281–1288.
  • [23] TAKESHIGE F., KAWAKAMI Y., HAYASHI M., EBISU S., Fatigue behavior of resin composites in aqueous environments, Dental Materials, 2007, 23, 893–899.
  • [24] BECHTLE S., HABELITZ S., KLOCKE A., FETT T., SCHNEIDER G.A., The fracture behaviour of dental enamel, Biomaterials, 2010, 31, 375–384.
  • [25] SANCHES R.P., OTANI C., DAMIAO A.J., MIYAKAWA W., AFM characterization of bovine enamel and dentine after acid etching, Micron, 2009, 40, 502–506.
  • [26] FRAZIER P.D., Adult human enamel: an electron microscopic study of crystallite size and morphology, J. Ultrastruct. Res., 1968, 22, 1–11.
  • [27] SIANG F.A., SCHULZ A., FERNANDES R.P., SCHNEIDER G.A., Sub-10-micrometer toughening and crack tip toughness of dental enamel, Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 423–432.
  • [28] BAJAJ D., NAZARI A., EIDELMAN N., AROLA D.D., A comparison of fatigue crack growth in human enamel and hydroxyapatite, Biomaterials, 2008, (36)29, 4847–4854.
  • [29] BAJAJ D., AROLA D.D., On the R-curve behavior of human tooth enamel, Biomaterials, 2009, 30, 4037–4046.
  • [30] KAHLER B., SWAIN M.V., MOULE A., Fracture-toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine, Journal of Biomechanics, 2003, 36, 229–237.
  • [31] ANGKER L., SWAIN M.V., KILPATRICK N., Micro-mechanical characterization of the properties of primary tooth dentine, Journal of Dentistry, 2003, 31, 261–267.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBD-0003-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.