PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solid sorption cooler with composite sorbent bed and heat pipe thermal control

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three adsorbers cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fibre with MnCl2 microcrystals on the filament surface). The third low temperature adsorber had second complex compound (activated carbon fibre with BaCl2 microcrystals on the filament surface). The cycle of physical adsorption and chemical reactions in the sorbent bed of adsorber was followed with condensation/evaporation of ammonia inside the pores of the sorbent material. The specific feature of the third adsorber is the time of its cold generation. It is the sum of the liquid evaporation time and the time of desorption/regeneration of ammonia in the sorbent bed. This is a novelty of cooler design, which increases the heat and cold generation capacity and rate. The cooler thermal management is based on vapordynamic thermosyphons. The solar heat is the source of energy of cooler. The sink of the cold is the air flow.
Słowa kluczowe
Rocznik
Tom
Strony
12--18
Opis fizyczny
Bibliogr. 22 poz., rys., wykr., il.
Twórcy
autor
autor
autor
  • Luikov Heat & Mass Transfer Institute, Minsk, Belarus
Bibliografia
  • Bougard J., Veronikis G., 18-20 November 1992, Adsorbeur modulaire pour machine frigorique solaire charbon actif-ammoniac, Symposium "Le froid a sorption solide ”, Paris,, p.282-287
  • Pons M., Guilleminot J.J., 1986, Design of an experimental solar powered, solid-adsorption ice maker, Journal of Solar Energy Engineering -Trans ASME, Vol. 108,332-337
  • Wang R.Z., Jia J.P., Zhu Y.H., Tong Y., Wu J.Y., Cheng J., Wang Q.B., 1997, Study on the new solid adsorption refrigeration pair : Active carbon fiber - methanol, ASME Journal of Solar Energy Engineering, vol. 119, no.3. p. 214-218
  • Wang R.Z., 2001, Performance improvement of adsorption cooling by heat and mass transfer recovery operation, International Journal of refrigeration, vol.24, no. 7, p.602-611
  • Critoph R.E., September 4-7 2000, The use of thermosyphon heat pipes to improve the performance of a carbon-ammonia adsorption refrigerator, Proc. of the IV Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators”, Minsk, Belarus, p. 35-41
  • Grenier Ph., Guilleminot J.J., Meunier F., Pons P., 1988, Solar powered solid adsorption ice maker, Journal of Solar Energy Engineering, p. 108, 332- 337
  • Wang L.W., Wang R.Z., Oliveira R.G., 2009, A review on Adsorption Working Pairs for refrigeration, Renewable and Sustainable Energy Reviews, p. 13 (3):518-534
  • Saha B.B., Akisawa A., Kashiwagi T., 2001, Solar/waste heat driven two-stage adsorption chiller: the prototype, Renewable Energy, p. 93- 101
  • Vasiliev L.L., Mishkinis D.A., Antukh A.A., Vasiliev L.L. Jr., 1999, A solar and electrical solid sorption refrigerator, Int. J. Thermal Sci., 38, p. 220-227
  • Vasiliev L., Kanonchik L., Antukh A., Kulakov A., Rosin I., 1994, Waste Heat Driven Solid Sorption Coolers, SAE Technical Paper 941580
  • Vasiliev L.L., Kanonchik L.E., Antukh A.A., Kulakov A. G., 1996, NAX Zeolite, Carbon Fiber and CaChl2 Ammonia Reactors for Heat Pumps and Refrigerators, Adsorption, p. 311-316
  • Vasiliev L.L., Mishkinis D.A., Antukh A.A. Vasilliev L.L. Jr., 2001, A solar-gas solid refrigerator, Adsorption, p. 149-161
  • Atsushi Akisawa, Takahito Miyzaki, 2010, Multi-bed adsorption heat pump cycles and their optimal operation, Advances in Adsorption Technology, Ed. B. B. Saha and K.C. NG, Nova Science Publishers Inc., p.241-279
  • Douss N., Meunier F., 1989, Experimental study of cascading adsorption cycles, Chemical Engineering Science, p.225-235
  • Liu Y., Leong K, 2006, Numerical study of a novel cascading absorption cycle, International Journal of Refrigeration, 250-259
  • Stitou D., Spinner B., Satzger, P., Ziegler F., Development and comparison of advanced cascading cycles coupling a solid/gas thermochemical process and a liquid/gas absorption process, Applied Thermal Engineering, p. 1237-1269
  • Vasiliev L.L., Mishkinis D.A., Vasiliev L.L. Jr., 1996, Complex Compound/Ammonia Coolers Technical Paper Series 961462, 26th In Conference on Environmental Systems, Monterey
  • Chua H.T., Ng K.C., Malek A„ Kashiwagi T..Akisawa A. Saha B.B., 2001, Multi-bed rgenerative adsorption chiller - improving the utilization of waste heat and reducing the chilled water outlet temperature fluctuation, International Journal of Refrigeration, 24, p. 124-136
  • Saha B.B., Koyama S., Lee J.B., Kuwahara K. Alam K.C.A., Hamamoto Y., Akisawa A., Kashiwagi T., August 2003, Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller, International Journal of Multiphase Flow, Volume 29, Issue 8, p. 1249-1263
  • Khan M.A.I., Saha B.B., Alam K.C.A., Miyazaki T., Akisawa A., Kashiwagi T., 2006, Multi-bed Mass Recovery Adsorption Cycle-Improving Performance, Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, vol. 23; no.4; pp.399-408
  • Vasiliev et al. US Patent, Nov. 26, 1985 "Heat transfer Device” No. 455966
  • Vasiliev L., 1998, State-of-the-art on heat pipe technology in the Former Soviet Union, Applied Thermal Engineering 16 (7), p. 507 – 551
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBC-0006-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.