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Abstract: Ordered fuzzy numbers (OFN) were introduced by Kosifiski, Prokopowicz and
Slezak in 2002. The definition of OFN uses the extension of the parametric representation of
convex fuzzy numbers. So far, they were applied to deal with optimization problems when
data are fuzzy. In 2011 Kacprzak and Kosinski observed that a subspace of OFN called step
ordered fuzzy numbers (SOFN) may be equipped with a lattice structure. In consequence, a
Boolean operations like conjunction, disjunction and, what is more important, diverse types
of implications can be defined on SOFN. In this paper we show how OFN can be applied in
multi-agent systems for modelling agents’ beliefs about fuzzy expressions. Then we present
preliminary version of a logic based on SOFN and study how this logic can be helpful in
evaluating features of multi-agent systems concerning agents’ fuzzy beliefs.
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1. Introduction

In real life we often use notions like bad weather, high temperature, small women,
high humidity, obese man, or a firm which does well. Let us focus on these expres-
sions. When we say that somebody is obese, when we talk about obesity? As a cri-
terion we may consider body mass index (BMI) - a measurement which compares
weight and height. However, in every day chatting, nobody calculates this index and
then such an assessment deeply depends on a performer of the claim. Expressions
which are not clear-cut and for which it is difficult to assign one from the values
true or false, occur not only in human communication but also in software engineer-
ing, e.g., in rules exploited in fuzzy controllers. In the current work we are going to
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study and analyze a problem of representation and evaluation of fuzzy expressions in
communication performed in multi-agent systems. To capture diversity of approaches
concerning expressions like “obesity”, in literature are considered multi-valued log-
ics [24,25] or fuzzy logics [31].

The good example of application of fuzzy technique in the context of Multi-
Agent Systems (MAS) technology was done by Maione and Naso in [26] in man-
ufacturing control systems. Namely, it is known that agents derive inspiration from
communities of intelligent decision makers in uncertain and extremely dynamic en-
vironments, and that fuzzy techniques are suited to model human decision-making.
Therefore, in [26] the authors discuss the potentialities of the challenging combina-
tion of Soft Computing, namely fuzzy logic techniques, and Multi-Agent paradigms
in task contracting problems for manufacturing control. In particular, the paper exam-
ines if and how much agents’ decision schemes benefit from the application of fuzzy
methodologies.

The Fuzzy Set Theory gives effective tools to model the degreases of satisfaction
of decision objectives and to combine them in a unique criterion of evaluation. In par-
ticular, each decision objective can be described with a fuzzy membership function
where degree zero (one) expresses the minimum (maximum) satisfaction of the objec-
tive, while all the intermediate values represent degrees of partial satisfaction ([3,33]).
Then the global objective is the fuzzy aggregation of the weighted goals when t-norm
may be used or, parameterized operator providing a more realistic tradeoff between
the conflicting objectives (suggested in [33], p. 37) called the “Compensatory AND”
operator with some free parameter to be fixed.

In our paper we propose new approach in which ordered fuzzy numbers (OFN)
are applied. We limit our considerations to multi-agent systems and concentrate on
agents’ beliefs. Our study is twofold. On the one hand we want to make agents able
to use ordered fuzzy numbers in their “thinking” and making decisions. On the other
hand we plan to use ordered fuzzy numbers for evaluating agents’ beliefs about their
beliefs.

The theory of fuzzy numbers [6] is that set up by Dubois and Prade [7], who pro-
posed a restricted class of membership functions, called (L,R)-numbers with shape
functions L and R. However, approximations of fuzzy functions and operations are
needed if one wants to follow Zadeh’s [31] extension principle. It leads to some draw-
backs that concern properties of fuzzy algebraic operations, as well as to unexpected
and uncontrollable results of repeatedly applied operations. These problems are re-
solved in ordered fuzzy numbers. OFN were invented by Kosinski, Prokopowicz and
Slezak in the previous decade [17,18,19,20,21]. The definition of OFN uses the exten-
sion of the parametric representation of convex fuzzy numbers. Step ordered fuzzy
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numbers (SOFN) form a subspace of ordered fuzzy numbers and may be equipped
with a lattice structure. Then fuzzy implications can be defined on OFN and SOFN
with the help of algebraic operations defined on OFN.

Fuzzy logic, as the originator of this idea Lotfi A. Zadeh noticed (c.f. [32]), has
two main directions. Fuzzy logic in the broad sense is one of the techniques of soft-
computing and serves mainly as apparatus for fuzzy control, analysis of vagueness
in natural language and several other application domains. In this field the methods
of fuzzification, approximate reasoning and defuzzification are often exploited. Here,
we give three examples of works which join the paradigm of multi-agent systems with
fuzzy control. One of them is a fuzzy-based approach for partner selection in MAS
[30]. In this work, agents, using fuzzy reasoning, can adapt their individual behaviors
for partner selection in negotiation. By employing fuzzy logic, the proposed approach
can be applied in open and dynamic environments easily and flexibly. The next ex-
ample is a multi-agent system for knowledge-based access to distributed databases
[29]. In this work, the KQML (Knowledge Query and Manipulation Language) is
extended with fuzzy linguistic variables to deal with the human style of decision pro-
cessing and support fuzzy decision making. The last example is a multi-agent systems
for environmental control and intelligent buildings [12]. This work refers to the intel-
ligent home project in which home environment is fitted with distributed intelligent
home-control agents like WaterHeater, CofeeMaker, DishWasher, etc. All of them
exploit in their work fuzzy inferencing.

Fuzzy logic in the narrow sense is a branch of many-valued logic based on
the paradigm of inference under vagueness. Here, the focus of the research is on
a logical system and its metamathematical properties. A basic monograph in this
field is written by Hajek [13]. One of the main operations in fuzzy logic are fuzzy
implications. Deep study on analytical and algebraic aspects of fuzzy implications
are presented by Baczynski and Jayaram [1].

Our current paper refers to both meanings of the term of fuzzy logic. On the
one hand, our scientific interests concern multi-agent systems where agents are fuzzy
controllers. Our main idea is to enrich such systems with much more sophisticated
dialogues than are offered by KQML. On the other hand, we make a first step for
introducing a new logic where ordered fuzzy numbers play a crucial role. The main
goal of this research is to offer a formal tool adequate for evaluating properties con-
cerning dialogues between fuzzy controllers and other agents.

The paper is organized as follows. Section 1 gives a brief overview of ordered
fuzzy numbers. In Section 2, step ordered fuzzy numbers are presented. Section 3
defines a lattice structure on OFN. In section 4 application of OFN in reasoning about
agents’ beliefs is discussed. Section 5 gives some conclusions.
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2. Ordered fuzzy numbers

Proposed recently by the second author and his two coworkers: P.Prokopowicz and
D. §lgzak [17,18,19,20,21] an extended model of convex fuzzy numbers [27] (CFN),
called ordered fuzzy numbers (OFN), does not require any existence of membership
functions. In this model an ordered fuzzy number is a pair of continuous functions, f
and g, say, defined on the interval [0, 1] with values in R. To see OFN as an extension
of CFN - model, take a look on a parametric representation know since 1986, [9] of
convex fuzzy numbers.

The continuity of both parts implies their images are bounded intervals, say UP
and DOW N, respectively. We may used symbols to mark boundaries for UP = [I4, 1]
and for DOWN = [IX , pa). In general, the functions f, g need not to be invertible, only
continuity is required. If we add the constant function on the interval [1,, 11] with its
value equal to 1, we might define the membership function

p(x) = pp(x), if x € [la, 1;] = [£(0), f(1)], (D
u(x) = Udown(x), if x € [I:xrva] = [g(1),£(0)] and
u(x)=1 whenx € [1,,1}]
if f < g are both invertible, i.e. inverse functions f~! =: Uyp and g ' = taown ex-
ist, and f is increasing, and g is decreasing. Obtained in this way the membership
function u(x),x € R represents a mathematical object which reminds a convex fuzzy
number in the classical sense [5,15].

On OFN four algebraic operations have been proposed between fuzzy numbers
and crisp (real) numbers, in which componentwise operations are present. In par-
ticular if A = (fa,g4),B = (f,gg) and C = (fc, gc) are mathematical objects called
ordered fuzzy numbers, then the sum C = A+ B, product C =A- B, divisionC=A-+B
and scalar multiplication by real r € R, are defined in natural way: r-A = (rfa,rga)

nonn

and fc(v) = fa(y) * f(v), gc(y) = ga(y) *gs(y) where "x" works for "+", "", and
"+", respectively, and where A < B is defined, if the functions | f3| and |gp| are bigger
than zero. Notice that the subtraction of B is the same as the addition of the opposite
of B, i.e. the number (—1) - B, and consequently B — B = 0. From this follows that any
fuzzy algebraic equation A + X = C with given A and C as OFN possesses a solution,
that is OFN, as well. Moreover, to any convex and continuous fuzzy number corre-
spond two OFNss, they differ by the orientation: one has positive, say (f,g) , another
(g, f) has negative.

A relation of partial ordering in the space of all OFN, denoted by X, can be
introduced by defining the subset of ‘positive’ ordered fuzzy numbers: a number A =
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(f,g) is not less than zero, and by writing
A>0 iff £>0,g>0. )

In this way the set & becomes a partially ordered ring. Notice, that for each two
fuzzy numbers A = (fa,g4),B = (fs,g8) as above, we may define AAB =: F and
AV B =: G, both from R, by the relations:

F= (fFagF)ﬂif fF :inf{fA7fB}7gF :inf{gAagB}' (3)

Similarly, we define G =AV B.

Notice that in the definition of OFN it is not required that two continuous func-
tions f and g are (partial) inverses of some membership function. Moreover, it may
happen that the membership function corresponding to A does not exist; such num-
bers are called improper. In any case for A = (f,g) we call f - the up-part and g -
the down-part of the fuzzy number A. To be in agreement with further and classical
denotations of fuzzy sets (numbers), the independent variable of the both functions f
and g is denoted by y (or some times by s), and their values by x.

3. Step ordered fuzzy numbers

It is worthwhile to point out that a class of ordered fuzzy numbers (OFNs) represents
the whole class of convex fuzzy numbers that possess continuous membership func-
tions. To include all CFN (with discoontiuous meembership functions) some gener-
alization of functions f and g is needed. This has been already done by the second
author who in [16] assumed they are functions of bounded variation. i.e. they belong
to BV. Then all convex fuzzy numbers are contained in this new space Kzy D R_of
OFN. Then operations are defined Kpy in the similar way, the norm, however, will
change into the norm of the cartesian product of the space of functions of bounded
variations. Then all convex fuzzy numbers are contained in this new space Kgy of
OFN. Notice that functions from BV [23] are continuous except for a countable num-
bers of points.

Important consequence of this generalization is the possibility of introducing a
subspace of OFN composed of pairs of step functions. If we fix a natural number
K and split [0,1) into K — 1 subintervals [a;,a;11), i.e. Kul[ai,ai+1) =[0,1), where

i=1

0=a; <ay <.. <ag =1, and define a step function f of resolution K by putting
u; on each subinterval [a;,a;41), then each such function f is identified with a K-
dimensional vector f ~ u = (uj,uy...ux) € RK , the K-th value ug corresponds to
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Fig. 1. Example of a step ordered fuzzy number A = (f,g) € Rk, (a) function f, (b) function g, (c)
membership function.

s =1, i.e. f(1) = ug. Taking a pair of such functions we have an ordered fuzzy
number from Rpgy. Now we introduce

Definition 2. By a step ordered fuzzy number A of resolution K we mean an ordered
pair (f,g) of functions such that f,g : [0,1]—R are K-step functions.

We use Ry for denotation the set of elements satisfying Def. 2. The example of
a step ordered fuzzy number and its membership function are shown in Fig. 1. The
set Rxg C Rpy has been extensively elaborated by our students in [10] and [22]. We
can identify g with the Cartesian product of RX x RX since each K-step function is
represented by its K values. It is obvious that each element of the space Rx may be
regarded as an approximation of elements from Rpy, by increasing the number K of
steps we are getting the better approximation. The norm of Ky is assumed to be the
Euclidean one of R?X | then we have a inner-product structure for our disposal.

4. Lattice structure on Rx

Let us consider the set Rx of step ordered fuzzy numbers with operations V and A
such that for A = (f4,g4) and B = (f5,g5)

AVB= (sup{fA7fB}7sup{gAvgB})v ANB= (lnf{fA)fB}vlnf{gAvgB})

In [14] we have shown that the algebra (Rg,V, /) defines a lattice structure and
proved the following theorem.
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Theorem 1. The algebra (Rg,V,A) is a lattice.

Let B be the set of two binary values: 0,1 and let us introduce the particular
subset AL of Rg N = {A = (u,v) € Rx : u € BX v € BK}. It means such that each
component of the vector u as well as of v has value 1 or 0. It is easy to observe that
all subsets of A have both a join and a meet in (. In fact, for every pair of numbers
from the set {0, 1} we can determine max and min and it is always O or 1. Therefore
A creates a complete lattice. In such a lattice we can distinguish the greatest element
1 represented by (1,...,1) and the least element O represented by (0, ...,0).

Theorem 2. The algebra (A/,V, A) is a complete lattice.

We say that two elements A and B are complements of each other if and only if
AVB =1 and AAB = 0. The complement of a number A will be marked with —A
and is defined as follows:

Definition 3. Let A € A be a step ordered fuzzy number represented by a binary
vector (ay,az,...,ak). By the complement of A we understand

“A=(l—ay,1—ay,...,1 —ax).

A bounded lattice for which every element has a complement is called a com-
plemented lattice. Moreover, the structure of step ordered fuzzy numbers { A/, V, A}
forms a complete and complemented lattice in which complements are unique. In
fact it is a Boolean algebra. In the example with K = 2 a set of universe is created by
vectors

N: {(al,az,a3,a4) € R4 La; € {0,1},f01‘i: 1727314}'

The complements of elements are —(0,1,0,0) = (1,0,1,1), =(1,1,0,0) = (0,0, 1,1)
etc. Now we can rewrite the definition of the complement in terms of a new mapping.

Definition 4. For any A € A\’ we define its negation as
N(A) = (1 —dai, 1 —az,...,l —aZK),ifA = (al,az,...,ay().
It is obvious, from Definitions 3 and 4, that the negation of given number A is
its complement. Moreover, the operator N is a strong negation, because is involutive,

ie.
N(N(A)) =A forany A € A_.
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One can refer here to known facts from the theory of fuzzy implications (cf.
[1,2,8]) and to write the strong negation N in terms of the standard strong nega-
tion N; on the unit interval / = [0,1] defined by Nj(x) = 1 —x,x € I, namely
N((al,az, e ,azK)) = ((N[(al),NI(ag), . ,N[(azK)).

In the classical Zadeh’s fuzzy logic the definition of a fuzzy implication on an
abstract lattice L = (L, <) is based on the notation from the fuzzy set theory intro-
duced in [8].

Definition 5. Let £ = (L,<;,0r,1,) be a complete lattice. A mapping I : L> — L
is called a fuzzy implication on L if it is decreasing with respect to the first variable,
increasing with respect to the second variable and fulfills the border conditions

I(07,00) = I(1z,1) =17, 1(12,0.) = 0. “4)

Now, possessing the lattice structure of Kx (SOFN) and the Boolean structure
of our lattice A/, we can repeat most of the definitions know in the Zadeh’s fuzzy
set theory. The first one is the Kleene—Dienes operation, called a binary implication,
already introduced in our previous paper [14] as the new implication (cf. Definition
4in [14])

I,(A,B) =N(A)VB, forany A,B€ N . Q)

In other words, the result of the binary implication (A, B), denoted in [14] by A — B,
is equal to the result of operation sup for the number B and the complement of A:

A — B =sup{—A,B}.
Next we may introduce the Zadeh implication by
I(A,B) = (AAB)VN(A), forany A,B € N . (6)

Since in our lattice Kk the arithmetic operations are well defined we may introduce
the counterpart of the Lukasiewicz implication by

I(A,B)=C,where C=1A(1+B—A). (7)

In the calculating the RHS of (7) we have to regard all numbers as elements of R,
since by adding the ordered fuzzy number A from A to the crisp number 1 we may
leave the subset Al C Rg. However, the operation A will take us back to the lattice
AL. Tt is obvious that in our notation 1y = 1 . The explicit calculation will be: if
C=(c1,¢2,...,01)),A= (a1,a2,...,a2¢),B = (b1,b2,...,bax), then c; = min{1,1 —
a;+b;}, where 1 <i<2K.
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5. Application of OFN in reasoning about fuzzy beliefs

In this section we show how agents’ attitudes can be modelled by means of ordered
fuzzy numbers. Assume a model of a multi-agent system which is consistent with
the formalism used in the software tool Perseus [4]. In the future this verifier may
be extended to analyze also distributed systems where agents have fuzzy beliefs. In
this formalism, a model of a multi-agent system is assumed to be an enriched Kripke
structure M = (Agt,S,RB,1,v) where

- Agt ={1,2,3,... n} is a set of names of agents,

— Sis a non-empty set of states (the universe of a structure),

— RB is a (doxastic) function which assigns to every agent a binary relation,
RB : Agt —> 25”5  this function gives an interpretation for agents’ beliefs,

— I is an interpretation of actions, I : ITy — (Agt — 25*5) where Iy is a set of
atomic actions,

— vis a valuation function, v : § — {0,1}"* where V} is a set of propositions.

This model should be extended with a set L of linguistic variables. By linguistic
variables we mean variables which values are from the set of words or sentences of a
natural (or artificial) language. Formally it is a foursome [ = (Z,T,U,m) where

Z is a name of variable /,

T is a set of fuzzy terms which can be assigned to /,

U is a digital interval of values of /,

m is a rule which assigns ordered fuzzy numbers to terms from the set 7'.

For example, let [ describes speed of a car, then fuzzy terms which can be assigned to
[ are back, very slowly, slowly, fast, digital values for speed are assumed to be from
the interval [—50, 100]. Ordered fuzzy numbers assigned for speed are figured in Fig.
4a.

Since a current state of a multi-agent system changes dynamically it is reason-
able to expect that a rule m of a linguistic variable [ will be different in different states.
Therefore we propose to extend definition of / and assume that [ = (Z,T,U,mas)
where mys : T x Agt x S — OFN is a function which for every agent and every state
of a system assigns an ordered fuzzy number being an interpretation for elements
from 7. In other words, in various situations for various agents different rule m may
be accepted.

Now, consider a system with three agents A, B,C. The aim of the system is to
simulate a movement of a point laying on a segment (cf. [22]). Agent A observes
speed of the point. Agent B observes a distance from the point to the given stop point.
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Fig. 2. Linguistic variable: distance
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Fig. 3. Linguistic variables: speed and acceleration

Agent C is a fuzzy controller. Agents A and B provide to the controller data about the
speed and the distance of the point. We assume that speed is a linguistic variable
with values from the interval [-50,100] and terms “back, very slowly, slowly, fast”.
Similarly, distance is a linguistic variable with values from the interval [-50,300] and
terms “too close, close, moderately close, far”. Rules assigned ordered fuzzy numbers
to the above terms at the initial state are presented in Fig. 3 and 4a. The tasks of agents
A and B are to measure speed and the distance of the point (respectively), exchange
digital values for fuzzy expressions and then provide these data to the controller.
The task of the controller is to stop the point before the given stop point. It operates
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Fig. 4. Linguistic variable: distance

on the third linguistic variable, i.e., acceleration. Values of this variable are form
the interval [-20,10] and are described by terms “slow dawn sharply, slow down, no
change, speed up, speed up sharply”. The rule which assigns ordered fuzzy numbers
to these terms are pictured in Fig. 4b. The controller given fuzzy terms concerning
speed and distance uses special rules to control the movement of the point. A base of
rules for this example is given in Table 1.

Table 1. Rules of the fuzzy controller.

too close close moderately close far
back speed up speed up sharply |speed up sharply |speed up sharply
very slow|slow down sharply no change speed up speed up sharply
slow |slow down sharply slow down no change speed up
fast  |slow down sharply|slow down sharply| slow down no change

Finally the controller determines the output fuzzy set describing acceleration and
transforms it into real value.
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Application of OFN in modelling agents’ beliefs has great advantage since al-
lows for manipulating fuzzy expressions rather then strict digital values. It makes
agents’ communication easier and faster and definitely simplifies knowledge bases
and rules which agents use in their decision process. In the example, agent C affects
the speed of the point but it does not care when it is to close of too far. It is a role
of agent B. In other words, agent B is a specialist which has abilities to evaluate the
distance and current scenario and then judge, e.g., whether the distance is to small.
For instance, if a point simulates a truck 1 meter to a wall means “close”, but if this
point simulates an ant 1 meter can be treated as very log distance. It is a specialist B
job to assessment this.

An extension of a model of a multi-agent system to linguistic variables and ex-
changing a rule m with a set of rules myg causes that agents can manipulate fuzzy
expressions and what is more can have different point of view on criteria which de-
termine their subjective interpretations of this expressions.

The most important problem when we consider fuzzy beliefs of agents is how to
check properties of such defined systems. The question is about a language in which
we can evaluate whether some property is true or not. Leu us discus it now. Assume
that in the above example is also agent D. It tries to guess the behavior of agent C, i.e.,
agent D needs to learn what action C decided to perform. D beliefs that if A says that
the point is close and B says that the point moves slowly then C decides to slow up.
To create a formula describing this property use here a commonly accepted language
of epistemic logic based on Kripke structure [11]. In this formalism we can write

Bp(A_close) ABp(B_slow) — Bp(C_slow_up)

where Bp(T') informally means that agent D beliefs that 7 holds. Our aim is to verify
whether this formula is true in a model of the system from the example.
Furthermore, we know that agent D is not sure about beliefs of agents A and
B and assumes that terms close and slow are interpreted by ordered fuzzy numbers
depicted in Fig. 5. Notice that D departs from the truth (cf. Fig. 3) but not so much.
However, if we take into account classical two-valued logic then at the initial state
of the system formula Bp(A_close) A Bp(B_slow) is not true. It stems from the fact
that beliefs of D about beliefs of A and B are not true. For some digital values they
agree but for another not. Although the OFN representations are not the same they
are very similar. In two-valued logic we lose this important information. Therefore,
we propose to use new, innovative approach in which step ordered fuzzy numbers are
applied. In Section 3 we showed that SOFN creates a lattice with Boolean operations
of conjunction, disjunction and implication. Therefore it is possible to employ these
numbers as a logical values for OFN. Let v; be a valuation function which for every
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formula assigns an ordered fuzzy number and assume that (111111) means absolutely
true and (000000) means absolutely false. Values between (111111) and (000000),
like e.g. (10100) express different kinds of half-truth. Below is given a hypothetical
assignment:

(@) vi(Bp(A_close)) = (101101)
(b) vi(Bp(B_slow)) = (100111)
(¢) vi(Bp(C_slow_up)) = (000000)

Analyze intuitions concerning these values. In (a) it is assumed that agent D
does not know exactly for which digital values from [-50,500] term “close” is as-
cribed since the assigned value does not equal to (11111). However, if the interval
[-50,500] is divided into 3 parts then in parts one and three agent D agrees with agent
B. Similar interpretation is for value (100111) assigned to formula Bp(B_slow). In
(c) it is assume that agent D has no idea what and when agent C says about accelera-
tion of the point. Based on these values we can determine value of the whole formula:

vi(Bp(A_close) ABp(B_slow) — (Bp(C_slow_up)) = (011010)

It means that agent D guesses faultlessly the kind of activity of the controller
when considered digital values of speed and distance are very small, middle or very
high. Such information surely can not be expressed by classical logical values true
and false. Although multi-valued and fuzzy logics can deal with more than two values
such a precise knowledge can be captured only by ordered fuzzy numbers.

6. Conclusion

The paper lays the foundations of new logic based on step ordered fuzzy numbers
which will be very helpful in capturing how agents can reason about fuzzy ex-
pressions. This is innovative approach to modelling agents’ beliefs and their uncer-
tainty about beliefs of other agents. We show motivation for introducing such a new
logic. The application of it we mainly find in analyzing agents’ communication when
knowledge base of agents is represented by a set of ordered fuzzy numbers expressing
diverse agents’ attitudes. Furthermore, step ordered fuzzy numbers, when are applied
as logical values for propositions and other formulas of the applied language, give
much more information than that something is frue or false. We hope that this in-
novative approach is very promising in specification and verification of multi-agent
systems where some software engineering ideas are applied, e.g. where fuzzy control
is suitable. It could be also very useful in reasoning about software agents which are
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decision support systems. For example, we can analyze activity of agents which assist
clients with their decisions in e-shops, i.e., agents which support users of a system in
choosing a right product.
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MODELOWANIE ROZMYTYCH PRZEKONAN
AGENTOW

Streszczenie: Skierowane liczby rozmyte (SLR) zostaty wprowadzone przez W. Kosin-
skiego, P. Prokopowicza i D. Slezaka w 2002 roku. Definicja skierowanych liczb rozmy-
tych wykorzystuje rozszerzenie parametrycznej reprezentacji wypuktych liczb rozmytych.
SLR do tej pory byly wykorzystywane do rozwiazywania probleméw optymalizacyjnych
dla rozmytych danych. W 2011 roku M. Kacprzak i W. Kosifiski zaobserwowali, ze schod-
kowe skierowane liczby rozmyte (SSLR) stanowiace podprzestrzenn SLR tworza kratg. W
konsekwencji, Boolowskie operacje takie jak koniunkcja, alternatywa oraz rézne rodzaje
(rozmytych) implikacji moga by¢ zdefiniowane w zbiorze schodkowych skierowanych liczb
rozmytych. Celem niniejszej pracy jest pokazanie nowego zastosowania SLR jakim jest mo-
delowanie przekonan agentéw w Srodowisku systemoéw wieloagentowych, gdy przekonania
te dotycza rozmytych poje¢ i danych. Jest to pierwszy krok w kierunku stworzenia petne;j
logiki opartej na warto$ciach ze zbioru SSLR. Logika ta umozliwi analiz¢ wtasnosci syste-
mow, w ktérych agenci maja rozmyte przekonania.

Stowa kluczowe: skierowane liczby rozmyte, schodkowe skierowane liczby rozmyte, roz-
myte przekonania, systemy wieloagentowe



