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Abstract: In the paper it is presented an algorithm for generating pseudo-random binary
sequences. There are formulated theorems concerning properties of the sequence generated
by the algorithm. The sequence is not periodic. Moreover, for any natural number n > 0, the
initial fragment of the generated sequence of the length (2 · n) · 2(2·n) contains all (binary)
series of the length n.

Keywords: pseudo-random computer generators, computer simulations, probabilistic algo-
rithms

1. Introduction

Computer modeling of real stochastic processes is mainly based on a pseudo-random
computer generator.

In the present paper we shall be concerned with uniform binary pseudo-random
generators, i.e., with the set {0,1} of values.

We can restrict ourselves to the case of uniform binary pseudo-random gener-
ators because by means of such a binary generator, we can construct any uniform
generator with the set of values of the form {0,1, ...,m}, for arbitrary integer m > 1
(cf. [2], [5]). This construction essentially depends on the fact that the results of two
successive random assignments

x:= random; x:= random;

realized by means of a pseudo-random generator, treated as random events, are inde-
pendent.

Each uniform binary pseudo-random generator will be viewed in terms of an
infinite sequence

b0 b1 b2 ... bn ...
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of values bn from {0,1}, n = 0,1,2, ..., produced by the generator in succession, one
after the other. We shall be interested in the case, where the sequence

{bn}n=0,1,2,...

is not periodic.
Typical information on a periodic pseudo-random computer generator concerns

the set of obtained values and the period of the generator. Some users of computer
generators believe, in an intuitive manner, that the credibility of results of computer
simulations seems to essentially depend on the length of the period of the generator.
But the dependence is not evident. Let us consider an example of a sequence produced
by a generator with the following period sequence:

010011000111 ... 00...0︸ ︷︷ ︸
l

11...1︸ ︷︷ ︸
l

of the length p = l · (l +1).
Speaking informally, since the frequencies of appearing of "0" and "1" are the same
then this generator is uniform. On the other hand, it is easy to see that the sequence
produced by generator does not contain any subsequence of the form

01...01︸ ︷︷ ︸
2k

for k≥ 2. This means that this periodic sequence cannot be used as a straightforward
(pseudo) random sequence, in spite of the fact that its period could be arbitrarily
large. Other remarks related periodic pseudo-random generator will be formulated in
the next section.

2. Remarks on periodic generators

Let us consider a fixed periodic binary pseudo-random generator producing a se-
quence

{bn}n=0,1,2,... .

We recall that this generator will be called periodic (cf. [13], [14]) if and only if there
exist numbers q and p > 0 such that for i ≥ q, bi = bi+ j·p for j = 0,1,2, .... The se-
quence bq bq+1 ... bq+p−1 is called the period sequence of the sequence {bn}n=0,1,2,....

We shall now introduce some definitions and notation.
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By a series we shall understand any finite sequence c of the form

c0 c1 ... ck−1

where ci ∈ {0,1} for i = 0,1, ...,k−1. The number k will be called the length of the
series.

We shall say that a pseudo-random generator, producing a sequence
{bn}n=0,1,2,..., realizes the series c0 c1 ... ck−1 if and only if there exists an index
m, m ≥ 0, such that the sequence bm bm+1 ... bm+k−1 and the sequence c0 c1 ... ck−1
are identical. In the case, where such an index m does not exist, we shall say that the
generator omits the series c0 c1 ... ck−1.

The following remark shows a shortcoming of periodic pseudo-random genera-
tors.

Remark 1.
Any periodic pseudo-random generator omits some series.

ut

To argue this fact let us suppose that

bq bq+1 ... bq+p−1

is the period sequence of a generator. It is easy to observe that the generator omits
the sequence

bq bq+1 ... bq+p−1 (1−bq)

(its length is length p+ 1). In reality, the minimal length of omitted series is essen-
tially less than that period of the generator (cf. [5]).

Using the above remark we shall show that the use of periodic generators may
lead to important differences between results of computer simulations and theoreti-
cally determined facts.

Let us consider a fixed binary pseudo-random generator producing a sequence
{bn}n=0,1,2,... and let c0 c1 ... ck−1 be a series omitted by the generator.

Let P denote the following program below, where the initial values of the vari-
ables C0, C1, ..., Ck-1 are c0 c1 ... ck−1, respectively, and the realization of the
instructions x:=random{0,1} consists in assigning to the variable x the values pro-
duced by the considered generator in succession, one after the other.
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begin
t:= 0;
while (t = 0) do

begin
t:= 1;
x:= random{0,1};
if ((t=1)&(x=C0)) then t:= 1 else t:= 0;
x:= random{0,1};
if ((t=1)&(x=C1)) then t:= 1 else t:= 0;

. . .

x:= random{0,1};
if ((t=1)&(x=Ck-1)) then t:= 1 else t:= 0;

end;
end;

It is easy to observe (cf. [3], [5]) that in the case, where the generator realizes
the series c0 c1 ... ck−1, the program P ends its computation and in the case, where
the generator omits the series c0 c1 ... ck−1 this program does not end its computa-
tion. This means that the results of computer simulations based on periodic pseudo-
random generators may essentially differ from the result of computer simulations
using straightforward random generators.

3. Grey codes

We start with the definition of Grey codes (cf. [1], [11]). First, we give examples of
the sequences C(l) =< cl

i, i = 0,1, ...,2l−1 > of Grey codes of the length l = 1,2,3.

l = 1, C(1) =< c1
0,c

1
1 >=< 0,1 >,

l = 2, C(2) =< c2
0,c

2
1,c

2
2,c

2
3 >=< 00,10,11,01 >,

l = 3, C(3) =< c3
0,c

3
1, ...,c

3
7 >=< 000,100,110,010,011,111,101,001 > .

The induction step in defining the sequence C(l+1), provided that the sequence C(l) is
defined, is the following:

for C(l) =< c(l)0 ,c(l)1 , ...,c(l)2l−2,c
(l)
2l−1 >

we define C(l+1) =< c(l)0 0,c(l)1 0, ...,c(l)2l−10,c(l)2l−11, ...,c(l)1 1,c(l)0 1 > .
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Let us denote by g(l, i, j) the j-th position of the i-th sequence c(l)i of the sequence
C(l), i = 0,1, ...,2l − 1, j = 0,1, ..., l− 1. It is known that the binary values g(l, i, j)
can be defined inductively as follows (cf. [1], [11]):

g(1,0,0) = 0, g(1,1,0) = 1,

g(l +1, i, j) =


0 for i = 0,1, ...,2l−1 and j = l +1
g(l, i, j) for i = 0,1, ...,2l−1 and j = 0,1, ..., l−1
1 for i = 2l,2l +1, ...,2l+1−1 and j = l +1
g(l,2l+1−1− i, j) for i = 2l,2l +1, ...,2l+1−1

and j = 0,1, ..., l−1.

We shall now investigate whether the "infinite concatenation"

C(1) ◦C(2) ◦ ...◦C(l) ◦ ... .

of the sequences C(l), l = 1,2,3, ..., could play the role of an uniform binary pseudo-
random generator. Denote by

{rn}n=0,1,2,...

the sequence corresponding to the "infinite concatenation" of the sequences C(l), l =
1,2,3, .... Let us first note that the length p(l) of the sequence

C(1) ◦C(2) ◦ ...◦C(l).

satisfies the inductive equation

p(0) = 0, p(1) = 2,
p(l +1) = p(l)+((l +1) ·2l+1).

Let n be an arbitrary natural number. Denote by l the natural number such that

p(l)≤ n < p(l +1)

and let
i = (n− p(l)) div (2l) and j = (n− p(l)) mod (2l).

The sequence {rn}n=0,1,2,... corresponding to the "infinite concatenation" of the se-
quences C(l) can be defined in the following way:

rn = g(l, i, j)

where l,g(l, i, j), p(l), i, j have the meaning as in the above. The following algorithm
R(n) computes the elements of the sequence {rn}n=0,1,2,.... We shall assume that
the program functions P(l), G(l,i,j), used in R(n), have been previously pro-
grammed and compute the function p(l), g(l, i, j) defined above.
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function R(n);
begin

if (n=0) then return(0)
else if (n=1) then return(1)

else
begin

l:= 1;
while (P(l+1) <= n) do l:= l+1;
i:= (n-P(l))div(2^l);
j:= (n-P(l))mod(2^l);
return(G(l,i,j));

end;
end;

Remark 2.
The complexity of the algorithm R(n) is O(n).

ut

To argue this remark it is sufficient to note that the complexity of computation of the
functions p(l) and g(l, i, j) is of the order O(l).

Now, we recall the well known property o Grey codes of the length l (cf. [1],
[11]):

Let C(l) =< c(l)0 ,c(l)1 , ...,c(l)2l−2,c
(l)
2l−1 > be the sequence of Grey codes of

the length l. For each j = 1,2, ...,2l−1, the codes c(l)j−1 and c(l)j differ
on only one position.

This property causes that the sequence {rn}n=0,1,2,... cannot be used as a pseudo-
random generator.

Remark 3.
The algorithm R(n) is of any use in pseudo-random generating binary sequences.

It can be used in testing whether a binary pseudo-random generator realizes
or omits particular binary series. Moreover, since R(n) produces all finite binary
sequences, it can be used in algorithm testing.

ut

The main motive for the above detailed presentation of the algorithm R(n) is
the fact, that the idea of the construction of the binary pseudo-random generator,
presented in Section 5, is analogous, in a way, to the construction of R(n). Namely,
similarly to the case of R(n), the result sequence of the proposed generator can be
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viewed as an "infinite" concatenation

S(1) ◦S(2) ◦S(3) ◦ ...◦S(l) ◦ ... .

of sequences, where the length of S(i) is equal to 8, for i = 1 and (i ·2i− 1
2 · i ·2

l−1) for
i > 1. We shall formulate (cf. Theorem 1, Section 5) the fact, that the initial fragment

S(1) ◦S(2) ◦S(3) ◦ ...◦S(l) ◦ ... .

of the generated sequence, being of the length l · 2l , realizes all series of the length
1
2 · l.

To describe precisely the algorithm we need to introduce a notation and formu-
late some auxiliary mathematical facts. This will be done in the next section.

4. Mathematical preliminaries

The main fact formulated in this section is a lemma concerning a manner of natural
number representation.

To formulate this lemma we need a notation. By d we shall denote natural num-
bers of the form 2u, where u = 0,1,2, . W shall now define:

l(d) = 2d ,
w(d) = l(d) ·d,
s(d) = 2 · l(d) · l(d) ·d,

For example, we have:

d = 1, l(1) = 2, w(1) = 2, s(1) = 8,
d = 2, l(2) = 4, w(2) = 8, s(2) = 64,
d = 4, l(4) = 16, w(4) = 64, s(4) = 2048,
d = 8, l(8) = 256, w(8) = 2048, s(8) = 1048576.

Using the above notation we shall formulate the main.

Lemma
Let n be an arbitrary natural number, greater than 7 and let d be the number of the
form 2u, where u = 1,2, ..., such that

s(d/2)≤ n < s(d).

Then there exist natural numbers i, j, k, such that

n = i · (2 ·w(d))+ j ·d + k
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and such that
0≤ i < l(d), 0≤ j < 2 · l(d), 0≤ k < d.

The numbers i, j, k, are determined univocally.
ut

The inductive proof of the lemma is rather technical and is omitted. We end this
section with two examples illustrating the lemma.

Example 1.
n = 47.
For d = 2 we have:

8 = s(1)≤ 47 < s(2) = 64,
2 ·w(2) = 2 ·8 = 16.

For the values i = 2, j = 7,k = 1, satisfying
0≤ i = 2 < l(d) = 4, 0≤ j = 7 < 2 · l(d) = 8, 0≤ k = 1 < d = 2,

we have
47 = i · (2 ·w(d))+ j ·d + k = i ·16+ j ·2+ k = 2 ·16+7 ·2+1.

Example 2.
n = 1831.
For d = 4 we have:

64 = s(2)≤ 1831 < s(4) = 2048,
2 ·w(4) = 2 ·64 = 128.

For the values i = 14, j = 9,k = 3, satisfying
0≤ i = 14 < l(d) = 16, 0≤ j = 9 < 2l(d) = 32, 0≤ k = 3 < d = 4,

we have
1831 = i · (2 ·w(d))+ j ·d + k = i ·128+ j ·4+ k = 14 ·128+9 ·4+3.

5. The algorithm

Using the notation introduced in the preceding section we can describe the proposed
algorithm generating a binary pseudo-random sequence. For readability of inductive
equations, describing the sequence generated by the algorithm, elements of the se-
quence will be denoted by

{B(n)}n=0,1,2,....

The recursive definition of the sequence is as follows:
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(A) Initial values:
We define the values B(n), for n satisfying n < s(1) = 8, i.e.,
for n = 0,1,2,3,4,5,6,7:

B(0) = 1, B(1) = 1, B(2) = 0, B(3) = 1,
B(4) = 0, B(5) = 0, B(6) = 1, B(7) = 0.

(B) Induction step:
Assume that the elements B(n) are defined for all values n satisfying

n < s(d/2).

We shall now define the values for n satisfying

s(d/2)≤ n < s(d),

i.e., for
n = i · (2 ·w(d))+ j ·d + k,

where i = 0,1, ..., l(d)−1, j = 0,1, ...,2 · l(d)−1, k = 0,1, ...,d−1.

(B0) We first define the values B(n), for n satisfying

w(d) = s(d/2)≤ n < 2 ·w(d) :

Namely,

B(n) = B(w(d)+ j ·d + k) = B([(l(d)− j−1)modl(d)] ·d + k)

for j = 0,1, ..., l(d)−1, k = 0,1, ...,d−1.
Thus we have defined the values B(n), for n = i · (2 ·w(d))+ j ·d + k, where
i = 0 and j = 0,1, ...,2l(d)−1, k = 0,1, ...,d−1.

(B1) Now, we define

B(n) =



B((i−1) ·2 ·w(d)+ j ·d + k)
if (i is even and j is even),

B((i−1) ·2 ·w(d)+ [( j+2)mod(2 · l(d)] ·d + k)
if (i is even and j is odd),

B((i−1) ·2 ·w(d)+ [( j−2)mod(2 · l(d)] ·d + k)
if (i is odd and j is even),

B((i−1) ·2 ·w(d)+ j ·d + k)
if (i is odd and j is odd)
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for

n = i · (2 ·w(d))+ j ·d + k,

where
i = 1,2, ..., l(d)−1,
j = 0,1, ...,2 · l(d)−1,
k = 0,1, ...,d−1.

This ends the induction step.

The above inductive definition of the sequence {B(n)}n=0,1,2,... is not convenient
for computer implementation. However, it enables us to formulate theorems concern-
ing properties of the sequence.

6. Properties of the sequence generated by the algorithm

In this section we formulate (without proofs) several facts about the sequence
{B(n)}n=0,1,2,... that concern its probabilistic properties.

Theorem 1.
For any natural number n > 0, the initial fragment of the generated sequence of the
length (2 ·n) ·2(2·n) contains all (binary) series of the length n.

ut

Corollary 1.
The sequence {B(n)}n=0,1,2,... is not periodic.

ut

Let a denote a fixed series a0a1...ad−1 of the length d being of the form d = 2u,
where u = 0,1,2, ... .

By Na(n) we shall denote the number of occurrences of the series a in the initial
fragment B(0)B(1)...B(n).

Let us also define

Fa(n) =
Na(n)

n
.

The intuitive meaning of Fa(n) is the frequency of appearing of the series a in the
initial fragment B(0)B(1)...B(n).
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Theorem 2.
Let a and b denote fixed series of the same length d.
Then

lim
n→∞

Na(n)
Nb(n)

= 1

ut

Let us treat the results of successive execution of two random assignments

x:= random; x:= random;

realized by means of a pseudo-random generator, as random events.
The following theorem concerns, in a way, the independence of such events.

Theorem 3.
Let a and b denote fixed series of the same length d.
Then

lim
n→∞

n · Na◦b(n)
Na(n) ·Nb(n)

= lim
n→∞

Fa◦b(n)
Fa(n) ·Fb(n)

= 1

ut

The independence of results of random assignments based on a pseudo-random gen-
erator is of great importance for modeling real stochastic processes (cf. [3]).

7. Final remarks

The proofs of mathematical facts formulated in the paper are too long for presentation
in this publication and therefore are omitted here. They will be presented in separate
papers.

The question of nonrecursive implementation of the inductive definition of the
sequence {B(n)}n=0,1,2,... will be discussed in a separate paper. This paper will also
contain an analysis of the complexity of such an implementation.
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ALGORYTM GENEROWANIA PSEUDOLOSOWYCH
CIĄGÓW BINARNYCH

Streszczenie: W pracy został przedstawiony algorytm generowania pseudo-losowego ciągu
binarnego. Sformułowane zostały twierdzenia dotyczące własności otrzymanego ciągu. Nie
jest to ciąg okresowy i dla dowolnego n > 0, początkowy odcinek ciągu o długości (2 · n) ·
2(2·n) zawiera wszystkie serie binarne o długości n.

Słowa kluczowe: pseudolosowy generator komputerowy, symulacja komputerowa, algo-
rytm probabilistyczny

Artykuł zrealizowano w ramach pracy badawczej S/WI/1/2011.
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