Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the application of finite element method in an artificial disc modelling. The prosthesis consisted of two metal plates and a flexible elastomeric core made of the nanocomposite polyurethane. Two types of connections between the plates and the core were compared: the device with an integral inlay and the device with a separate inlay coming into contact with the plates. The artificial disc with a separate inlay imitated better the human intervertebral disc. The main target of this paper was to evaluate the characteristics of force-displacement and moment-angle for the new design of the prosthesis with a separate inlay under compression, sagittal bending, shear and axial rotation. For some analyzed cases except the axial rotation and shear, where the prosthesis was too flexible, the results were roughly similar to those observed in the human spinal segment. The material effort in the prosthesis under compressive load was comparable in both types of connections between the plates and the core.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
59--66
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
autor
- The Faculty of Power Engineering and Applied Mechanics, Warsaw University of Technology, pbork@meil.pw.edu.pl
Bibliografia
- [1] BONO M.CH., GARVIN S.R., History and evolution of disc replacement, Spine J., 2004, 4, 145–150.
- [2] GAYER R., McAFEE P., HOCHSCHULERAT S. et al., Prospective randomized study of the Charité artificial disc data from two investigational centres, Spine J., 2004, 4, 252–259.
- [3] MATHEWS H.H., LEHUEC J.CH., FRIESEM T. et al., Design rationale and biomechanics of Maverick Total Disc arthroplasty with early clinical results, Spine J., 2004, 4, 268–275.
- [4] PIMENTA L., SPRINGMULLER R., LEE C.K., Clinical performance of an elastomeric lumbar disc replacement: Minimum 12 months follow up, SAS Journal, 2010, 4, 1, 16–25.
- [5] CUNNINGHAM B.W., LOWERY G. L., SERHAN H.A., Total disc replacement arthroplasty using the AcroFlex lumbar disc: a non-human primate model, Eur. Spine J., 2002, 11, S115–3.
- [6] ZAWADZAK E., BIL M., RYSZKOWSKA J. et al., Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds, Biomed. Mater., 2008, 4, 158–164.
- [7] KĘDZIOR K., BORKOWSKI P., KRZESIŃSKI G., SKALSKI K., ZAGRAJEK T., A nonlinear analysis of the human vertebral column and medical recommendations that follow, Bulletin of the Polish Academy of Sciences, Technical Sciences, 2005, 53, 3, 179–194.
- [8] WHITE A.A., PANJABI M.M. (eds.), Clinical Biomechanic of the Spine, ed. 2. Lippincot-Williams & Wilkins, 1990.
- [9] EIJKELKAMP M.F., van DONKELAAR C.C., VELDHUIZEN A.G. et al., Requirements for an artificial intervertebral disc, The International Journal of Artificial Organs, 2001, 24, 311–321.
- [10] SCHMIDT H., MIDDERHOFF S., ADKINS K., WILKE H.J., The effect of different design concepts in lumbar total disc arthroplasty on the range of motion, facet joint forces and instantaneous center of rotation of a L4-5 segment, European Spine Journal, 2009, 18, 11, 1695–1705.
- [11] SCHMIDT H., GALBUSERA F., ROHLMANN A. et al., Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis, European Spine Journal, Online First™, 2 April, 2010.
- [12] ROHLMANN A., MANN A., ZANDER T., BERGMANN G., Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study, European Spine Journal, 2009, 18, 1, 89–97.
- [13] DOORIS A.P., GOEL V.K., GROSLAND N.M. et al., Loadsharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc, Spine, 2001, 26–6, E122-E129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0009-0008