PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties of cervical dura mater

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine experimentally the stress as strain function as well as the orthotropy and heterogeneity of porcine dura mater of the cervical spinal cord. Material was divided into groups based on the place of collection, considering the dorsal side and ventral side, specifying the number of cervical vertebra, and the direction of tension of the sample - longitudinal or circumferential. Experimental studies were conducted with the MTS Synergie 100 testing machine. The tensile test was performed for each sample at a speed of 2 mm/min until the sample's break. There were determined the characteristics of stress as a function of strain in particular samples. Distribution maps of the stress and strain values at the characteristic points were then drawn (the beginning and the end of the linear range of the stress-strain characteristic and the point corresponding to the complete sample damage) for each set of samples, taking account of their collection place and direction of tension. The results confirmed the orthotropy of mechanical properties of dura mater. Stress and strain differed also in the value at the height of each vertebra and exhibited diversification on the ventral side compared to dorsal one.
Słowa kluczowe
Rocznik
Strony
51--58
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] BOCHENEK A., REICHER M., Anatomia człowieka. Tom IV. Układ nerwowy, wyd. III(IV), Wydawnictwo Lekarskie PZWL, Warszawa, 1993, 1997, 2000.
  • [2] REINA M.A., DITTMANN M., GARCIA A.L., ZUNDERT A., New perspectives in the microscopic structure of human dura mater in the dorsolumbar region, Reg. Anesth., 1997, 22(2), 161–166.
  • [3] REINA M.A., LÓPEZ-GARCÍA A., DITTMANN M., de ANDRÉS J.A., Structural analysis of the thickness of human dura mater with scanning electron microscopy, Rev. Esp. Anestesiol. Reanim., 1996, 43(4), 135–137.
  • [4] REINA M.A., LÓPEZ-GARCÍA A., DITTMANN M., de ANDRÉS J.A., Scanning electron microscopic view of the outer and inner surfaces of the human dura mater, Rev. Esp. Anestesiol. Reanim., 1996, 43(4), 130–134
  • [5] KŁYSZEJKO-STEFANOWICZ L., Cytobiochemia. Biochemia niektórych struktur komórkowych, Wydawnictwo Naukowe PWN, Warszawa, 2002.
  • [6] WYSOCKI M., KOBUS K., SZOTEK S., KOBIELARZ M., KUROPKA P., BĘDZIŃSKI R., Biomechanical effect of rapie mucoperosteal palatal tissue expansion with the use of osmotic expanders, J. Biomech., 2011, 44, 1313–1320.
  • [7] WILCOX R.K., BILSTON L.E., BARTON D.C., HALL R.M., Mathematical model for the viscoelastic properties of dura mater, J. Orthop. Sci., 2003, 8, 432–434.
  • [8] RUNZA M., PIETRABISSA R., MANTERO S., ALBANI A., QUAGLINI V., CONTRO R., Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observations, Anesth. Analg., 1999, 88, 1317–1321.
  • [9] GREAVES C.Y., GADALA M.S., OXLAND T.R., A threedimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms, Ann. Biomed. Eng., 2008, 36(3), 396–405.
  • [10] LI X.F., DAI L.Y., Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis, Spine (Phila Pa 1976), 2009, 34(11), 1140–1147.
  • [11] WILCOX R.K., ALLEN D.J., HALL R.M., LIMB D., BARTON D.C., DICKSON R.A., A dynamic investigation of the burst fracture process using a combined experimental and finite element approach, Eur. Spine J., 2004, 13(6), 481–488.
  • [12] ICHIHARA K., TAGUCHI T., SAKURAMOTO I., KAWANO S., KAWAI S., Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and gray matter, J. Neurosurg., 2003, 99(3 Suppl), 278–285.
  • [13] CZYŻ M., ŚCIGAŁA K., JARMUNDOWICZ W., BĘDZIŃSKI R., The biomechanical analysis of the traumatic cervical spinal cord injury using finite element approach, Acta Bioeng. Biomech., 2008, 10(1), 43–54.
  • [14] CZYŻ M., ŚCIGAŁA K., JARMUNDOWICZ W., BĘDZIŃSKI R., Numerical model of the human cervical spinal cord – the development and validation, Acta Bioeng. Biomech., 2011, 13(4), 51–58.
  • [15] SPARREY C.J., KEAVENY T.M., The effect of flash freezing on variability in spinal cord compression behavior, J. Biomech. Eng., 2009, 131(11), 111010.
  • [16] SPARREY C.J., KEAVENY T.M., Compression behavior of porcine spinal cord white matter, J. Biomech., 2011, 44(6), 1078–1082.
  • [17] WITKIEWICZ W., GNUS J., HAUZER W., KOBIELARZ M., BĘDZIŃSKI R., SZOTEK S., KOSIŃSKI M., PFANHAUSER M., BAŁASZ S., Biomechanical characteristics of the abdominal aortic wall, Acta Angiol., 2007, 13(3), 122–129.
  • [18] BRIEG A., Biomechanics of the Central Nervous System, Almqvist & Wiksells, Stockholm, 1960.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0009-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.