Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An understanding of the load transfer within spinal posterior column of lumbar spine is necessary to determine the influence of mechanical factors on potential mechanisms of the motion-sparing implant such as artificial intervertebral disc and the dynamic spine stabilization systems. In this study, a new method has been developed for evaluating the load bearing of spinal posterior column by the surface strain of spinal pedicle response to the loading of spinal segment. Six cadaveric lumbar spine segments were biomechanically evaluated between levels L1 and L5 in intact condition and the strain gauges were pasted to an inferior surface of L2 pedicles. Multidirectional flexibility testing used the Panjabi testing protocol; pure moments for the intact condition with overall spinal motion and unconstrained intact moments of +-8 Nm were used for flexion-extension and lateral bending testing. High correlation coefficient (0.967-0.998) indicated a good agreement between the load of spinal segment and the surface strain of pedicle in all loading directions. Principal compressive strain could be observed in flexion direction and tensile strain in extension direction, respectively. In conclusion, the new method seems to be effective for evaluating posterior spinal column loads using pedicles' surface strain data collected during biomechanical testing of spine segments.
Czasopismo
Rocznik
Tom
Strony
45--49
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Bibliografia
- [1] AMBROSETTI-GIUDICI S., GEDET P., FERGUSON S.J., CHEGINI S., BURGER J., Viscoelastic properties of the ovine posterior spinal ligaments are strain dependent, Clin. Biomech. (Bristol, Avon), 2010, Vol. 25, No. 2, 97–102.
- [2] BUTTERMANN G.R., KAHMANN R.D., LEWIS J.L., BRADFORD D.S., An experimental method for measuring force on the spinal facet joint: description and application of the method, J. Biomech. Eng., 1991, Vol. 113, No. 4, 375–386.
- [3] CHANG U.K., KIM D.H., LEE M.C., WILLENBERG R., KIM S.H., LIM J., Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion, J. Neurosurg. Spine, 2007, Vol. 7, No. 1, 33–39.
- [4] CHIBA M., MCLAIN R.F., YERBY S.A., MOSELEY T.A., SMITH T.S., BENSON D.R., Short-segment pedicle instrumentation. Biomechanical analysis of supplemental hook fixation, Spine (Phila Pa 1976), 1996, Vol. 21, No. 3, 288–294.
- [5] FRESVIG T., LUDVIGSEN P., STEEN H., REIKERAS O., Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone, Med. Eng. Phys., 2008, Vol. 30, No. 1, 104–108.
- [6] GEDET P., HASCHTMANN D., THISTLETHWAITE P.A., FERGUSON S.J., Comparative biomechanical investigation of a modular dynamic lumbar stabilization system and the Dynesys system, Eur. Spine J., 2009, Vol. 18, No. 10, 1504–1511.
- [7] HOLZAPFEL G.A., STADLER M., Role of facet curvature for accurate vertebral facet load analysis, Eur. Spine J., 2006, Vol. 15, No. 6, 849–856.
- [8] HONGO M., ABE E., SHIMADA Y., MURAI H., ISHIKAWA N., SATO K., Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures, Spine (Phila Pa 1976), 1999, Vol. 24, No. 12, 1197–1202.
- [9] INCEOGLU S., KILINCER C., TAMI A., MCLAIN R.F., Cortex of the pedicle of the vertebral arch. Part I: Deformation characteristics during screw insertion, J. Neurosurg. Spine, 2007, Vol. 7, No. 3, 341–346.
- [10] KALICHMAN L., HUNTER D.J., Lumbar facet joint osteoarthritis: a review, Semin. Arthritis. Rheum., 2007, Vol. 37, No. 2, 69–80.
- [11] LITTLE J.S., KHALSA P.S., Human lumbar spine creep during cyclic and static flexion: creep rate, biomechanics, and facet joint capsule strain, Ann. Biomed. Eng., 2005, Vol. 33, No. 3, 391–401.
- [12] MCLAIN R.F., MCKINLEY T.O., YERBY S.A., SMITH T.S., SARIGUL-KLIJN N., The effect of bone quality on pedicle screw loading in axial instability. A synthetic model, Spine (Phila Pa 1976), 1997, Vol. 22, No. 13, 1454–1460.
- [13] MEYERS K., TAUBER M., SUDIN Y., FLEISCHER S., ARNIN U., GIRARDI F., WRIGHT T., Use of instrumented pedicle screws to evaluate load sharing in posterior dynamic stabilization systems, Spine J., 2008, Vol. 8, No. 6, 926–932.
- [14] PANJABI M.M., CRISCO J.J., VASAVADA A., ODA T., CHOLEWICKI J., NIBU K., SHIN E., Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves, Spine (Phila Pa 1976), 2001, Vol. 26, No. 24, 2692–2700.
- [15] SAWA A.G., CRAWFORD N.R., The use of surface strain data and a neural networks solution method to determine lumbar facet joint loads during in vitro spine testing, J. Biomech., 2008, Vol. 41, No. 12, 2647–2653.
- [16] WILKE H.J., WENGER K., CLAES L., Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants, Eur. Spine J., 1998, Vol. 7, No. 2, 148–154.
- [17] WILSON D.C., NIOSI C.A., ZHU Q.A., OXLAND T.R., WILSON D.R., Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine, J. Biomech., 2006, Vol. 39, No. 2, 348–353.
- [18] ZHANG J., HE X., LI H., WANG D., ZHAO W., XU J., LAN B., XU S., Biomechanical study of anterior cervical corpectomy and step-cut grafting with bioabsorbable screws fixation in cadaveric cervical spine model, Spine (Phila Pa 1976), 2006, Vol. 31, No. 19, 2195–2201.
- [19] ZHU Q.A., PARK Y.B., SJOVOLD S.G., NIOSI C.A., WILSON D.C., CRIPTON P.A., OXLAND T.R., Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study, Proc. Inst. Mech. Eng. H, 2008, Vol. 222, No. 2, 171–184.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0009-0006