PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of artificial neural networks for assessing parameters of gait symmetry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study attempts to assess gait symmetry based on measurement of vertical component of ground reaction force (GRF) in lower limbs. The aim of the study was to compare the results of gait classification obtained by means of artificial neural networks (ANN) and authors' own quantitative index method. Twenty male and twenty female physiotherapy students participated in the study. Measurements were carried out by means of the Kistler force plate. The profiles of GRF were analysed using ANN which classifies the cases under one of four groups of asymmetry based on suitably prepared training set. Author's own index method was employed for quantitative assessment of the degree of gait asymmetry. The analysis of our symmetry index revealed that the difference between the cases classified by the network as symmetrical and other asymmetrical profiles was significant (p < 0.001), which suggests the conformity of both methods.
Rocznik
Strony
65--70
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] BARTON G., LEES A. et al., Visualisation of gait data with Kohonen self-organising neural maps, Gait & Posture, 2006, 24(1), 46–53.
  • [2] BARTON G., LISBOA P. et al., Gait quality assessment Rusing self-organising artificial neural networks, Gait & Posture, 2007, 25(3), 374–379.
  • [3] BOSCH K., ROSENBAUM D., Gait symmetry improves in childhood – A 4-year follow-up of foot loading data, Gait & Posture, 2010, 32(4), 464–468.
  • [4] CHEN G., PATTEN C. et al., Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold, Gait & Posture, 2005, 22(1), 57–62.
  • [5] CHOCKALINGAM N., DANGERFIELD P.H. et al., Assessment of ground reaction force during scoliotic gait, European Spine Journal, 2004, 13(8), 750–754.
  • [6] HAYFRON-ACQUAH J.B., NIXON M.S. et al., Automatic gait recognition by symmetry analysis, Pattern Recognition Letters, 2003, 24(13), 2175–2183.
  • [7] HSU A.-L., TANG P.-F. et al., Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke, Archives of Physical Medicine and Rehabilitation, 2003, 84(8), 1185–1193.
  • [8] JELEŃ P., WIT A. et al., Expressing gait-line symmetry In able-bodied gait, Dynamic Medicine, 2008, 7(17), 1–9.
  • [9] KAVANAGH J.J., MORRISON S. et al., Reliability of segmental accelerations measured using a new wireless gait analysis system, Journal of Biomechanics, 2006, 39(15), 2863–2872.
  • [10] KIM C.M., ENG J.J., Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke, Gait & Posture, 2003, 18(1), 23–28.
  • [11] MATSUSAKA N., Control and medial-lateral balance in walking, Acta Orthopeadica Scandinavica, 1986, 57(6), 555–559.
  • [12] PATTERSON K.K., GAGE W.H. et al., Evaluation of gait symmetry after stroke: A comparison of current methods and recommendations for standardization, Gait & Posture, 2010, 31(2), 241–246.
  • [13] SADEGHI H., ALLARD P. et al., Symmetry and limb dominance In able-bodied gait: a review, Gait & Posture, 2000, 12(1), 34–45.
  • [14] STOKŁOSA H., Symetria i asymetria, Roczniki Naukowe AWF Katowice, 1995, 23, 83–97.
  • [15] SYCZEWSKA M., GRAFF K. et al., Does the gait pathology In scoliotic patients depend on the severity of spine deformity? Preliminary results, Acta of Bioengineering and Biomechanics, 2010, 12(1), 25–28.
  • [16] WINIARSKI S., RUTKOWSKA-KUCHARSKA A., Estimated ground reaction force in normal and pathological gait, Acta of Bioengineering and Biomechanics, 2009, 11(1), 53–60.
  • [17] XU Y., WANG C. et al., Analysis of human gait bilateral symmetry for functional assessment after an orthopaedic surgery, Image Analysis and Recognition, M. Kamel and A. Campilho, Heidelberg, Springer, Berlin, 2009, 5627, 627–636.
  • [18] ZHANG K., SUN M. et al., Assessment of human locomotion by using an insole measurement system and artificial neural networks, Journal of Biomechanics, 2005, 38(11), 2276–2287.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0006-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.