PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the mechanical properties of the skin of pig foetuses with respect to its structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Skin is an important barrier protecting the organism against external environmental factors. Determination of its mechanical characteristics as regards its structure has significant scientific and application value. In this work, uniaxial tensile tests were conducted to determine the basic mechanical parameters of skin with respect to its structure. The subject of the study were skin samples taken from domestic pig foetuses. They were excised from different parts of body, in the direction parallel to the long axis of the body. Regardless of the sampling site, the tests revealed no significant differences in the values of the maximum tensile strength (2.08 +- 0.25 MPa) and the conventional Young's modulus (5.87 +- 1.52 MPa). The mechanical and structural tests confirmed that regardless of the sampling region the skin of domestic pig foetuses may constitute a human skin substitute model.
Rocznik
Strony
37--43
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
autor
autor
autor
autor
  • Division of Biomedical Engineering and Experimental Mechanics, Faculty of Mechanical Engineering, Wrocław University of Technology
Bibliografia
  • [1] ANKERSEN J., BIRKBECK A.E., THOMSON R.D., VANEZIS P., Puncture resistance and tensile strength of skin simulants, Proceedings of the Institution of Mechanical Engineers, 1999, 213(Part H), 493–501.
  • [2] ARUMUGAM V., NARESH M.D., SANJEEVI R., Effect of strain rate on the fracture behavior of skin, Journal of Biosciences, 1994, 19(3), 307–313.
  • [3] BARBERO A.M., FRASCH H.F., Pig and guinea pig as surrogates for human in vitro penetration studies: A quantitive review, Toxicology in Vitro, 2009, 32(3), 1–13.
  • [4] CILURZO F., MINGHETTI P., SINICO C., Newborn pig skin as model membrane in in vitro drug permeation studies: a technical note, An Official Journal of the American Association of Pharmaceutical Scientists, 2007, 8(4), 97–100.
  • [5] COWIN S.S., SILVER H.F., Mechanosensing and mechanochemical transduction in extracellular matrix: biological, chemical, engineering, and physiological aspects, Springer, 2006.
  • [6] DE LUCA C., VALACCHI G., Surface lipids as multifunctional mediators of skin responses to environmental stimuli, Mediators of Inflammation, 2010, 1–11.
  • [7] ELSNER P., BARARDESCA E., Bioengineering of skin. Methods and instrumentation, Boca Raton: CPC Press, 2002.
  • [8] FILIPIAK J., KRAWCZYK A., MORASIEWICZ L., Distribution of radiological density in bone regenerate in relation to cyclic displacements of bone fragments, Acta of Bioengineering and Biomechanics, 2009, 11(3), 3–9.
  • [9] FUNG Y.C.B., Elasticity of soft tissues in simple elongation, American Journal of Physiology, 1967, 213(6), 1532–1544.
  • [10] GEERLIGS M., Skin layer mechanics, printed by Universiteitsdrukkerij TU Eindhoven, 2009, PhD Thesis.
  • [11] GODIN B., TOUITOU E., Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal model, Advanced Drug Delivery Reviews, 2007, 59, 1152–1161.
  • [12] HARUNARI N., ZHU K.Q., ARMENDARIZ R.T., DEUBNER H., MUANGMAN P., CARROUGHER G.J., ISIK F.F., GIBRAN N.S., ENGARAV L.H., Histology of the thick scar on the female, red duroc pig: final similarities to human hypertrophic scar, Burns, 2006, 9, 669–677.
  • [13] IATRIDIS J.C., WU J., YANDOW J.A., LANGEVIN H.M., Subcutaneous tissue mechanical behavior is linear and viscoelastic under uniaxial tension, Connective Tissue Research, 2003, 44, 208–217.
  • [14] LAMBERT W.C., COHEN P.J., LAMBERT M.W., Role of the epidermis and other epithelia in wound healing: selected concepts, Clinics in Dermatology, 1984, 2(3), 24–33.
  • [15] LIU Z., YEUNG K., The preconditioning and stress relaxation of skin tissue, Journal of Biomedical & Pharmaceutical Engineering, 2008, 2(1), 22–28.
  • [16] NÍ ANNAIDH A., OTTENIO M., BRUYÈRE K., DESTRADE M., GILCHRIST M.D., Mechanical Properties of Excised Human Skin, 6th World Congress of Biomechanics, 2010, 31(3), 1000–1003.
  • [17] O’GRADY K.M., AGRAWAL A., BHATTACHARYYA T.K., SHAH A., TORIUMI D.M., An evaluation of fibrin tissue adhesive concentration and application thickness on skin graft survival, The Laryngoscope, 2000, 110, 1931–1935.
  • [18] SANDERS J.E., GOLDSTEIN B.S., LEOTTA D.F., Skin response to mechanical stress: adaptation rather than breakdown – a review of the literature, Journal of Rehabilitation Research and Development, 1995, 32(3), 214–226.
  • [19] SHERGOLD O.A., FLECK N.A., RADFORD D., The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, International Journal of Impact Engineering, 2006, 32, 1384–1402.
  • [20] SILVER F.H., SEEHRA G.P., FREEMAN J.W., DEVORE D., Viscoelastic properties of young and old human dermis: a proposed molecular mechanism for elastic energy storage in collagen and elastin, Journal of Applied Polymer Science, 2002, 86, 1978–1985.
  • [21] SILVER F.H., SIPERKO L.M., SEEHRA G.P., Mechanobiology of force transduction in dermal tissue, Skin Res. Technol., 2003, 9(1), 3–23.
  • [22] SULLIVAN T.P., EAGLSTEIN W.H., DAVIS S.C., MERTZ P., The pig as a model of human wound healing, Wound Repair and Regeneration, 2001, 9, 66–76.
  • [23] SZOTEK S., SZUST A., PEZOWICZ C., MAJCHER P., BĘDZIŃSKI R., Animal models in biomechanical spine investigations, Bulletin of the Veterinary Institute in Pulawy, 2004, 48(2), 163–168.
  • [24] SZOTEK S., BĘDZIŃSKI R., KOBIELARZ M., ŻYWICKA B., PIELKA S., KUROPKA P., Investigation of mechanical properties of the skin, Engineering of Biomaterials, 2008,Vol. 11, 81–84, 77–79.
  • [25] SZOTEK S., BĘDZIŃSKI R., KOBIELARZ M., GĄSIOR-GŁOGOWSKA M., KOMOROWSKA M., MAKSYMOWICZ K., HANUZA J., HERMANOWICZ K., Human skin properties determined by mechanical tests and Raman spectroscopy, Engineering of Biomaterials, 2009, 89–91, 208–210.
  • [26] THIRUNAVUKKARASU V., NANDHINI A.T., ANURADHA C.V., Fructose diet-induced skin collagen abnormalities are prevented by lipoic acid, Exp. Diabesity Res., 2004, 5(4), 237–244.
  • [27] VENTRE M., Supramolecular assembly and mechanical properties of dermis, 2007, PhD Thesis.
  • [28] VEXLER A., POLYANSKY I., GORODETSKY R., Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer, Journal of Investigative Dermatology, 1999, 113, 732–739.
  • [29] YAMAMOTO T., TAKAGAWA S., KATAYAMA I., YAMAZAKI K., HAMAZAKI Y., SHINKAI H., NISHIOKA K., Animal model of sclerotic skin: I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma, The Journal of Investigative Dermatology, 1999, 112(4), 456–462.
  • [30] ZHANG E., LIAO D.H., LIU A.Z., WANG X.B., LI X.Y., ZANG Y.J., WANG S.J., Biomechanical characteristics investigation on long-term free graft with expanded porcine skin, Clinical Biomechanics, 2006, 21(8), 864–869.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0002-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.