Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The prosthesis - pulsatory ventricular assist device (VAD) - is made of polyurethane (PU) and biocompatible TiN deposited by pulsed laser deposition (PLD) method. The paper discusses the numerical modelling and computer-aided design of such an artificial organ. Two types of VADs: POLVAD and POLVAD_EXT are investigated. The main tasks and assumptions of the computer program developed are presented. The multiscale model of VAD based on finite element method (FEM) is introduced and the analysis of the stress-strain state in macroscale for the blood chamber in both versions of VAD is shown, as well as the verification of the results calculated by applying ABAQUS, a commercial FEM code. The FEM code developed is based on a new approach to the simulation of multilayer materials obtained by using PLD method. The model in microscale includes two components, i.e., model of initial stresses (residual stress) caused by the deposition process and simulation of active loadings observed in the blood chamber of POLVAD and POLVAD_EXT. The computed distributions of stresses and strains in macro- and microscales are helpful in defining precisely the regions of blood chamber, which can be defined as the failure-source areas.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
13--23
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
autor
- Department of Applied Computer Science and Modelling, AGH University of Science and Technology, Kraków
Bibliografia
- [1] JONES M.I., McCOLL I.R., GRANT D.M., PARKER K.G., PARKER T.L., Protein adsorption and platelet attachment and activation on TiN, TiC, and DLC coatings on titanium for cardiovascular applications, J. Biomed. Mater Res., 2000, 52, 413–421.
- [2] EBNER R., LACKNER J.M., WALDHAUSER W., MAJOR R., CZARNOWSKA E., KUSTOSZ R., LACKI P., MAJOR B., Biocompatibile TiN-based novel nanocrystalline films, Bull. Pol. Ac. Tech., 2006, 54, 167–173.
- [3] MILENIN A., KOPERNIK M., FEM code for the multi-scale simulation of the stress–strain state of the blood chamber composed of polyurethane and TiN nanocoating, Comput. Meth. in Mater. Sci., 2011, 11, 215–222.
- [4] HANSBO P., Space-time oriented streamline diffusion methods for nonlinear conservation laws in one dimension, Commun. Numer. Methods Eng., 1994, 10, 203–215.
- [5] DONEA J., HUERTA A., PONTHOT J.P., RODRÍGUEZ-FERRAN A., Arbitrary Lagragian–Eulerian methods, Encyclopedia of Computational Mechanics, Stein E., de Borst R. and Hughes T. (editors), John Wiley&Sons, 2004, 1, 413–437.
- [6] MILENIN A., KOPERNIK M., The muliscale FEM model of artificial heart chamber composed of nanocoatings, Acta Bioeng. Biomech., 2009, 11, 13–20.
- [7] PAULEAU Y., Generation and evolution of residual stresses in physical vapour-deposited thin films, Vacuum, 2001, 61, 175–181.
- [8] KOPERNIK M., KOT R., The multiscale modeling of thin films growth, Hutnik, 2010, 8, 403–406.
- [9] SARNA J., KUSTOSZ R., MAJOR R., LACKNER J.M., MAJOR B., Polish Artificial Heart – new coatings, technology, diagnostics, Bull. Pol. Ac. Tech., 2010, 58, 329–335.
- [10] PARK J., KIM D.J., KIM Y.K., LEE K.H., LEE K.H., LEE H., AHN S., Improvement of the biocompatibility and mechanical properties of surgical tools with TiN coating by PACVD, Thin Solid Films, 2003, 435, 102–107.
- [11] CHIEN C.C., LIU K.T., DUH J.G., CHANG K.W., CHUNG K.H., Effect of nitride film coatings on cell compatibility, Dent. Mater., 2008, 24, 986–993.
- [12] SERRO A.P., COMPLETO C., COLAÇO R., SANTOS F., LOBATO da SILVA C., CABRAL J.M.S., ARAÚJO H., PIRES E., SARAMAGO B., A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications, Surf. Coat. Tech., 2009, 203, 3701–3707.
- [13] KOPERNIK M., MILENIN A., MAJOR R., LACKNER J.M., Identification of material model of TiN using numerical simulation of nanoindentation test, Mater. Sci. Tech., 2011, 27, 604–616.
- [14] FISCHER-CRIPPS A.C., Nanoindentation, Springer-Verlag, Lindfield, Australia, 2002.
- [15] De BORST R., Challenges in computational materials science, multiple scales, multi-physics and evolving discontinuities, Comp. Mat. Sci., 2008, 43, 1–15.
- [16] MILENIN A., MUSKALSKI Z., The FEM simulation of cementite lamellas deformation in pearlitic colony during drawing of high carbon steels, The Proc. Conf. Numiform., Cesar de Sa J.M.A. and Santos A.D. (editors), Porto, 2007, 1375–1380.
- [17] ZIENKIEWICZ O.C., TAYLOR R.L., The finite element method, Butterworth-Heinemann, London, 2000.
- [18] MOOSAVI M.-H., FATOURAEE N., KATOOZIAN H., Finite element analysis of blood flow characteristics in a ventricular assist device (VAD), Simul. Model. Pract. Th., 2009, 17, 654–663.
- [19] SACKS M.S., MERRYMAN W.D., SCHMIDT D.E., On the biomechanics of heart valve function, J. Biomech., 2009, 42, 1804–1824.
- [20] LITWIŃSKI P., WOŹNIEWICZ B., RELIGA G., PASTUSZEK M., PARULSKI A., JASIŃSKA M., KOCAŃDA S., KUSTOSZ R., SIONDALSKI P., RELIGA Z., Zastosowanie mechanicznego wspomagania krążenia sztucznymi komorami typu POLVAD w leczeniu wstrząsu kardiogennego na tle zapalenia mięśnia sercowego, Kardiochir. Torakochir. Pol., 2005, 2, 33–40.
- [21] MILENIN A., Podstawy metody elementów skończonych, Akademia Górniczo-Hutnicza, Kraków, 2010.
- [22] IRONS B.M., A frontal solution program for finite element analysis, Int. J. Numer. Meth. Eng., 1975, 3, 293–294.
- [23] TORQUATO S., Random heterogeneous materials: microstructure and macroscopic properties, Springer-Verlag, New York, 2002.
- [24] ZOHDI T.I., WRIGGERS P., Introduction to Computational Micromechanics, Springer Series, [in:] Lecture Notes, Appl. Comput. Mech., 2005, 20.
- [25] HILL R., On constitutive macro-variables for heterogeneous solids at finite strain, Proc. R. Soc. Lond., 1972, 326, 131–147.
- [26] THIBAUX P., CHASTEL Y., CHAZE A.-M., Finite element simulation of a two-phase viscoplastic material: calculation of the mechanical behaviour, Comput. Mater. Sci., 2000, 18, 118–125.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0002-0013