PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strain-rate sensitivity of porcine and ovine corneas

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Knowledge of strain-rate sensitivity of corneal tissue is important for improving the understanding of the tissue's response to mechanical actions and the accurate numerical simulation of corneal biomechanical behaviour under the effects of disease and surgery. In the study, fresh and well-preserved porcine and ovine corneal buttons were subjected to uniaxial tension loads with seven different strain rates ranging between 0.8 and 420% per minute. All specimens exhibited increased stiffness (as measured by the tangent modulus) with higher strain rates. However, clear differences in their behaviour were observed. While ovine corneas showed gradual, consistent and mostly statistically significant increases in stiffness with all elevations in strain rate, porcine corneas' response was significant over only a limited range of low strain rates. The effect of strain rate on the material's stress-strain behaviour was considered in the formation of three sets of constitutive models including: (i) a model based on a simple exponential stress-strain relationship, (ii) the Ogden model that considers the tissue's hyperelasticity but not anisotropy, and (iii) a third model by Holzapfel, Gasser and Ogden that considers both hyperelasticity and anisotropy. The three models are introduced to enable consideration of the strain rate effects in simulations employing finite element programs with varying capabilities or in modelling applications in corneal biomechanics which may or may not require consideration of mechanical anisotropy.
Rocznik
Strony
25--36
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] ELSHEIKH A., WANG D., BROWN M., RAMA P., CAMPANELLI M., PYE D., Assessment of corneal biomechanical properties and their variation with age, Curr. Eye Res., 2007, 32(1), 11–19.
  • [2] BRYANT M.R., McDONNELL P.J., Constitutive laws for biomechanical modeling of refractive surgery, J. Biomech. Eng., 1996, 118(4), 473–481.
  • [3] LEONARDI M., LEUENBERGER P., BERTRAND D., BERTSCH A., RENAUD P., First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens, Invest. Ophthalmol. Vis. Sci., 2004, 45(9), 3113–3117.
  • [4] ELSHEIKH A., ALHASSO D., RAMA P., Biomechanical properties of human and porcine corneas, Exp. Eye Res., 2008, 86(5), 783–790.
  • [5] BERTSCH A., LEONARDI M., RENAUD P., The sensing contact lens, Med. Device Technol., 2006, 17(5), 19–21.
  • [6] ELSHEIKH A., WANG D., RAMA P., CAMPANELLI M., GARWAY-HEATH D., Experimental assessment of human corneal hysteresis, Curr. Eye Res., 2008, 33(3), 205–213.
  • [7] BOYCE B.L., GRAZIER J.M., JONES R.E., NGUYEN T.D., Fullfield deformation of bovine cornea under constrained inflation conditions, Biomaterials, 2008, 29(28), 3896–3904.
  • [8] ELSHEIKH A., ALHASSO D., Mechanical anisotropy of porcine cornea and correlation with stromal microstructure, Exp. Eye Res., 2009, 88(6), 1084–1091.
  • [9] LEONARDI M., PITCHON E.M., BERTSCH A., RENAUD P., MERMOUD A., Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes, Acta Ophthalmol., 2009, 87(4), 433–437.
  • [10] HAYES S., BOOTE C., LEWIS J., SHEPPARD J., ABAHUSSIN M., QUANTOCK A.J., PURSLOW C., VOTRUBA M., MEEK K.M., Comparative study of fibrillar collagen arrangement in the corneas of primates and other mammals, Anat. Rec. (Hoboken), 2007, 290(12), 1542–1550.
  • [11] MEEK K.M., LEONARD D.W., Ultrastructure of the corneal stroma: a comparative study, Biophys. J., 1993, 64(1), 273–280.
  • [12] CAREW E.O., BARBER J.E., VESELY I., Role of preconditioning and recovery time in repeated testing of aortic valve tissues: validation through quasilinear viscoelastic theory, Ann. Biomed. Eng., 2000, 28(9), 1093–1100.
  • [13] KOTHE A.C., The effect of posture on intraocular pressureand pulsatile ocular blood flow in normal and glaucomatous eyes, Surv. Ophthalmol., 1994, 38, S191–197.
  • [14] McMONNIES C.W., BONEHAM G.C., Experimentally increased intraocular pressure using digital forces, Eye Contact Lens, 2007, 33(3), 124–129.
  • [15] LUCE D.A., Determining in vivo biomechanical properties of the cornea with an ocular response analyzer, J. Cataract. Refract. Surg., 2005, 31(1), 156–162.
  • [16] ELSHEIKH A., ANDERSON K., Comparative study of corneal strip extensometry and inflation tests, J. R. Soc. Interface, 2005, 2(3), 177–185.
  • [17] WOO S.L., KOBAYASHI A.S., SCHLEGEL W.A., LAWRENCE C., Nonlinear material properties of intact cornea and sclera, Exp. Eye Res., 1972, 14(1), 29–39.
  • [18] SHAW A.J., COLLINS M.J., DAVIS B.A., CARNEY L.G., Eyelid pressure and contact with the ocular surface, Invest. Ophthalmol. Vis. Sci., 2010, 51(4), 1911–1917.
  • [19] SHAW A.J., DAVIS B.A., COLLINS M.J., CARNEY L.G., A technique to measure eyelid pressure using piezoresistive sensors, IEEE Trans. Biomed. Eng., 2009, 56(10), 2512–2517.
  • [20] SHAW A.J., COLLINS M.J., DAVIS B.A., CARNEY L.G., Eyelid pressure: inferences from corneal topographic changes, Cornea, 2009, 28(2), 181–188.
  • [21] KAMPMEIER J., RADT B., BIRNGRUBER R., BRINKMANN R., Thermal and biomechanical parameters of porcine cornea, Cornea, 2000, 19(3), 355–363.
  • [22] MEEK K.M., BOOTE C., The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma, Prog. Retin. Eye Res., 2009, 28(5), 369–392.
  • [23] BOYCE B.L., JONES R.E., NGUYEN T.D., GRAZIER J.M., Stress-controlled viscoelastic tensile response of bovine cornea, J. Biomech., 2007, 40(11), 2367–2376.
  • [24] ZENG Y., YANG J., HUANG K., LEE Z., LEE X., A comparison of biomechanical properties between human and porcine cornea, J. Biomech., 2001, 34(4), 533–537.
  • [25] BOOTE C., DENNIS S., HUANG Y., QUANTOCK A.J., MEEK K.M., Lamellar orientation in human cornea in relation to mechanical properties, J. Struct. Biol., 2005, 149(1), 1–6.
  • [26] MEEK K.M., BOOTE C., The organization of collagen in the corneal stroma, Exp. Eye Res., 2004, 78(3), 503–512.
  • [27] McMONNIES C.W., Abnormal rubbing and keratectasia, Eye Contact Lens, 2007, 33(6), 265–271.
  • [28] UCHIO E., OHNO S., KUDOH J., AOKI K., KISIELEWICZ L.T., Simulation model of an eyeball based on finite element analysis on a supercomputer, Br. J. Ophthalmol., 1999, 83(10), 1106–1111.
  • [29] DOWNS J.C., BURGOYNE C.F., THOMAS K.A., THOMPSON H.W., HART R.T., Effects of strain rate on the mechanical properties of posterior rabbit sclera, [in:] Proceedings of the first joint BMES/EMBS Conference Serving Humanity, Advancing Technology, Atlana, GA, USA, 1999.
  • [30] ZHOU B., XU F., CHEN C.Q., LU T.J., Strain rate sensitivity of skin tissue under thermomechanical loading, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1912), 679–690.
  • [31] POTTS R.O., CHRISMAN D.A. Jr, BURAS E.M. Jr, The dynamic mechanical properties of human skin in vivo, Journal of Biomechanics, 1983, 16(6), 365–372.
  • [32] DALY C.H., Biomechanical properties of dermis, J. Invest. Dermatol., 1982, 79, Suppl 1, 17s–20s.
  • [33] MANOOGIAN S.J., Effect of strain rate on the tensile material properties of human placenta, Journal of Biomechanical Engineering-Transactions of the ASME, 2009, 131(9).
  • [34] SACK I., BEIERBACH B., WUERFEL J., KLATT D., HAMHABER U., PAPAZOGLOU S., MARTUS P., BRAUN J., The impact of aging and gender on brain viscoelasticity, NeuroImage, 2009, 46(3), 652–657.
  • [35] SNEDEKER J.G., NIEDERER P., SCHMIDLIN F.R., FARSHAD M., DEMETROPOULOS C.K., LEE J.B., YANG K.H., Strain–rate dependent material properties of the porcine and human kidney capsule, Journal of Biomechanics, 2005, 38(5), 1011–1021.
  • [36] SHERGOLD O.A., FLECK N.A., RADFORD D., The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, International Journal of Impact Engineering, 2006, 32(9), 1384–1402.
  • [37] LANIR Y., The rheological behaviour of the skin: experimental results and a structural model, Biorheology, 1979, 16(3), 191–202.
  • [38] SCOTT J.E., Elasticity in extracellular matrix “shape modules” of tendon, cartilage, etc. A sliding proteoglycanfilament model, J. Physiol., 2003, 553(Pt 2), 335–343.
  • [39] HAVERKAMP R.G., WILLIAMS M.A., SCOTT J.E., Stretching single molecules of connective tissue glycans to characterize their shape-maintaining elasticity, Biomacromolecules, 2005, 6(3), 1816–1818.
  • [40] HOELTZEL D.A., ALTMAN P., BUZARD K., CHOE K., Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas, J. Biomech. Eng., 1992, 114(2), 202–215.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0002-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.