PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents a novel approach to measure the enamel thickness potentially applicable to the veneer placing procedure. All experiments have been carried out on the extracted human teeth, using a high frequency ultrasonic transducer (50 MHz, Sonix, Springfield, VA, USA). The enamel thickness measurement results obtained with high positional accuracy by a scanning acoustic microscope (Tessonics AM1103, Windsor, ON, Canada) were compared with the measurements conducted in a hand-held mode by using the same transducer placed in a custom fixture. Finally, to validate the ultrasonic measuring results, the samples were cut down the long axis to expose the cross-section. The enamel thickness was measured in several points along the selected part of the exposed cross-section by using an optical microscope (Stemi SV 11, Carl Zeiss AG, Jena, Germany). The values of the enamel thickness received by using the hand-held probe vs. the acoustic microscope were in close proximity (about 10% difference) and were also satisfactory close to the enamel thickness results obtained from the direct cross-sectional measurements (about 12% difference). The authors suggested a measuring procedure that allows avoiding errors related to the ultrasonic beam localization on the tooth surface. The high feasibility of the ultrasonic pulseecho measurements in a hand-held mode was demonstrated.
Rocznik
Strony
65--70
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • The Institute for Diagnostic Imaging Research, University of Windsor, Windsor, Ontario, Canada, bartosz.slak@gmail.com
Bibliografia
  • [1] CHRISTENSEN G.J., What is veneer? Resolving the confusion, Journal of the American Dental Association, 2004, 135, 1574–1576.
  • [2] Ivoclar Vivadent AG, Technical notes: IPS e.max CAD, instructions for use, Lichtenstein, 2009.
  • [3] American Dental Association Specification No. 8, Journal of the American Dental Association, 1978, 57, 121–123.
  • [4] PEUMANS M., VAN MEERBEEK B., LAMBRECHTS P., VANHERLE G., Porcelain veneers: a review of the literature, Journal of Dentistry, 2000, 28(3), 163–177.
  • [5] PIEMJAI M., ARKSORNNUKIT M., Compressive fracture resistance of porcelain laminates bonded to enamel or dentin with four adhesive systems, Journal of Prosthodontics, 2007, 16(6), 457–464.
  • [6] HUGHES D.A., GIRKIN J.M., POLAND S., LONGBOTTOM C., BUTTON TW, ELGOYHEN J, HUGHES H, MEGGS C, COCHAN S., Investigation of dental samples using a 35 MHz focused ultrasound piezocomposite transducer, Ultrasonics, 2009, 49, 212–218.
  • [7] SMITH B.G., KNIGHT J.K., An index for measuring the wear of teeth, British Dental Journal, 1984, 256, 649–653.
  • [8] HOOPER S.M., MEREDITH N., JAGGER D.C., The development of a new index for measurement of incisal/occlusal tooth wear, Journal of Oral Rehabilitation, 2004, 31, 206–212.
  • [9] LOUWERSE C., KJAELDGAARD M., HUYSMANS M.C.D.N.J.M., The reproducibility of ultrasonic enamel thickness measurements: an in vitro study, Journal of Dentistry, 2004, 32, 83–89.
  • [10] TODA S., FUJITA T., ARAKWA A., TODA K., An ultrasonic nondestructive technique for evaluating layer thickness in human teeth, Sensors and Actuators A: Physical, 2005, 125, 1–9.
  • [11] CULJAT M., SINGH R.S., YOON D.C., BROWN E.R., Imaging of human tooth enamel using ultrasound, IEEE transactions on medical imaging, 2003, 22(4), 526–529.
  • [12] AM1103 Desktop Acoustic Microscope, Tessonics, Windsor, Canada.
  • [13] DENISOVA L.A., MAEV R.GR., LEONTJEV V.K., DENISOV A.F., GRAYSON G.G., RUSANOV F.S., BAKULIN E.Yu., GAVRILOV D.Yu., GRINEVA T.V., A study of the adhesion between dental cement and dentin using a nondestructive acoustic microscopy approach, Dental Materials, 2009, 25, 557–565.
  • [14] NG S.Y., PAYNE P.A., CARTLEDGE N.A., FERGUSON M.W., Determination of ultrasonic velocity in human enamel and dentine, Archives of Oral Biology, 1989, 34, 341–345.
  • [15] KUSHIBIKI J., HA K.L., KATO H., CHUBACHI N., Application of acoustic microscopy to dental material characterization, IEEE 1987 Ultrasonics Symposium, 1987, 837–842.
  • [16] BRIGGS A., Acoustic Microscopy, Chapter 9, Clarendon Press Oxford, 1992.
  • [17] DENISOVA L.A., MAEV R.GR., RUSANOV F.S., MAEVA A.R., DENISOV A.F., GAVRILOV D.Yu., BAKULIN E.Yu., SEVERIN F.M., Fundamental potential for acoustic microscopy evaluation of dental tissues, Acoustical Imaging, 2007, 28, 81–88.
  • [18] MAEV R.GR., DENISOVA L.A., DENISOV A., MAEVA E.Yu., New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy, Ultrasound in Medicine & Biology, 2002, 28(1), 131–136.
  • [19] MAEV R.Gr., Acoustic Microscopy. Fundamentals and Applications, Chapter 8, Wiley-VCH Weinheim, Germany, 2008, 222–231.
  • [20] HUYSMANS M.C.D.N.J.M., THIJSSEN J.M., Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion? Journal of Dentistry, 2000, 28(3), 187–191.
  • [21] BRUCIA J., Adhesive Dentistry: Materials & Techniques Simplified, laboratory instruction, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0002-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.