PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of muscles behaviour. Part 1 The computational model of muscle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to present the computational model of skeletal muscle, which was treated as the structure of different mechanical properties. The method of identification of those properties is described in detail. In addition, the method of quantitative and qualitative verification of this model is proposed. Applying this computational model, the forces of real muscles can be evaluated without using any optimization technique. Such an approach will be described in the part II of the paper.
Rocznik
Strony
15--21
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
autor
  • Mechanics and Strength of Materials Department, Mechanical Engineering Faculty, Gdańsk University of Technology, wiktoria.wojnicz@pg.gda.pl
Bibliografia
  • [1] van den BOGERT A.J., GERRITSEN K.G.M., COLE G.K., Human muscle modelling from a user’s perspective, Journal of Electromyography and Kinesiology, 1998, 8, 119–124.
  • [2] CAMILLERI M.J., HULL M.L., Are the maximum shortening velocity and the shape parameters in a Hill-type model of whole muscle related to activation? Journal of Biomechanics, 2005, 38, 2172–2180.
  • [3] DANIEL M., IGLIČ A., KRALJ-IGLIČ V., KONVIČKOVÁ S., Komputer system for definition of the quantitative geometry of musculature from CT images, Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8, 25–29.
  • [4] DELP S.L., Surgery simulation: a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb, PhD thesis, 1990, Stanford University Press, Stanford.
  • [5] van DONKELAAR C.C., WILLEMS P.J.B., MUIJTJENS A.M.M., DROST M.R., Skeletal muscle transverse strain during isometric contraction at different lengths, Journal of Biomechanics, 1999, 32, 755–762.
  • [6] GARNER B.A., PANDY M.G., Estimation of musculotendon properties in the human upper limb, Annals of Biomedical Engineering, 2003, 31, 207–220.
  • [7] HERZOG W., Muscle synergies during voluntary movement, Proceedings of XI International Biomechanics Seminar, 1998, Wrocław, Poland, 7–22.
  • [8] HUIJING P.A., Parameter interdependence and success of skeletal muscle modelling, Human Movement Science, 1995, 14, 443–486.
  • [9] JOHANSSON T., MEIER P., BLICKHAN R., A finite element model for the mechanical analysis of skeletal muscles, Journal of Theoretical Biology, 2000, 206, 131–149.
  • [10] LEMOS R.R., EPSTEIN M., HERZOG W., WYVILL B., A framework for structured modelling of skeletal muscle, Computer Methods in Biomechanics and Biomedical Engineering, 2004, 7, 305–317.
  • [11] de LUCA C.J., The use of surface electromyography in biomechanics, Journal of Applied Biomechanics, 1997, 13, 135–163.
  • [12] MAAS H., BAAN G.S., HUIJING P.A., Muscle force is determined also by muscle relative position: isolated effects, Journal of Biomechanics, 2004, 37, 99–110.
  • [13] MAAS H., LENTI T.M., TIIHONEN V., KOMULAINEN J., HUIJING P.A., Controlled intermittent shortening contractions of a muscle–tendon complex: muscle fibre damage and effects on force transmission from a single head of rat EDL, Journal of Muszle Research and Cell Motility, 2005, 26, 259–273.
  • [14] MEIJER K., GROOTENBOER H.J., KOOPMAN H.F.J.M., van der LINDEN B.J.J.J., HUIJING P.A., A Hill type model of rat medial gastrocnemius muscle that accounts for shortening history effects, Journal of Biomechanics, 1998, 31, 555–563.
  • [15] MROZOWSKI J., AWREJCEWICZ J., Podstawy biomechaniki, Politechnika Łódzka, Łódź, 2004.
  • [16] NARICI M., Human skeletal muscle architecture studied In vivo by non-invasive imaging techniques: functional significance and applications, Journal of Electromyography and Kinesiology, 1999, 9, 97–103.
  • [17] REHBINDER H., MARTIN C., A control theoretic model of the forearm, Journal of Biomechanics, 2001, 34, 741–748.
  • [18] WITTBRODT E., WOJNICZ W., Modelling and simulation of striated skeletal muscle and groups of muscles in arm–forearm system 2D, Proceedings of the International Conference Biomechanics 2003, Acta of Bioengineering and Biomechanics, 2003, Vol. 5, Supplement 1, 551–556.
  • [19] WOJNICZ W., WITTBRODT E., The modelling of behaviour of skeletal muscles in a dynamic state (in Polish), Proceedings of the International Conference Biomechanics 2004, Acta of Bioengineering and Biomechanics, 2004, Vol. 6, Supplement 1, 404–408.
  • [20] WOJNICZ W., WITTBRODT E., Analysis of muscles behaviour. Part II. The computational model of muscles’ group acting on the elbow joint, Acta of Bioengineering and Biomechanics, 2010 (to be published).
  • [21] WOJNICZ W., Modelowanie i symulacja zachowania zespołu mięśni szkieletowych układu ramię–przedramię, PhD Thesis, 2009, Technical University of Łódź, Poland.
  • [22] YUCESOY C.A., KOOPMAN B.H.F.J.M., HUIJING P.A., GROOTENBOER H.J., Three dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model, Journal of Biomechanics, 2002, 35, 1253–1262.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0001-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.