Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the present work was to examine the interactions of parylene C with such selected biological objects as: blood plasma proteins, platelets, endothelial cells, and bacterial biofilm produced by E. coli cells. The results obtained strongly support the thesis that parylene C is a material worth considering for biomedical use. Parylene C coating on polished medical steel significantly reduces platelet adhesion to this surface. On the other hand, in the case of the surface of machined medical steel coated with parylene C, the number of adhered platelets is significantly higher. This also means that surface texture of substrate material is very well reproduced by parylene C coating and is an important factor facilitating the platelet adhesion. Adsorption of plasma proteins at parylene C surface is very effective, and this finding confirms a notion that cell interaction with surfaces is mediated by the adsorbed proteins. In the light of the above, a high susceptibility of parylene C surface to bacterial colonization is easy to explain. The results showing reduced proliferation and changes in endothelial cell gene expression should also be seriously analysed when parylene C is considered for the use in contact with blood vessels.
Czasopismo
Rocznik
Tom
Strony
19--25
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
- Institute of Materials Science and Engineering and the Centre of Excellence NANODIAM, Technical University of Łódź
Bibliografia
- [1] GORHAM W.F., A new, general synthetic method for the preparation of linear poly(p-xylylenes), J. Polym. Sci., 1966, 4, 3027–3039.
- [2] GORHAM W.F., U.S. Patent 3,342,754A 670919, Para-xylylene polymers (by the pyrolysis of di-para-xylylene), 19 Sep. 1967.
- [3] BEACH W.F., LEE C., BASSET D.R., AUSTIN T.M., OLSON R., Xylylene Polymers, Encycl. Polym. Sci. & Engin., New York, Wiley, 1989, 990–1025.
- [4] GREINER A., Poly(p-xylylenes) structure, properties and applications, Salamone J.C. (ed.), Polymeric Materials Encyclopedia, Vol. 9, CRC Press, Boca Raton, Fl, 1996, 7171–7180.
- [5] GAZICKI-LIPMAN M., Parylene coatings, Lee S. (ed.), Encyclopedia of Chemical Processing, Taylor& Francis eBooks, DOI:10.1081/E-ECHP-120042961, 2007, 13 pages.
- [6] WEISENBERG B.A., MOORADIAN D.L., Hemocompatibility of materials used in microelectromechanical systems: platelet adhesion and morphology in vitro, J. Biomed. Mater. Res., 2002, 60, 283–291.
- [7] FONTAINE A.B., KOELLING K., PASSOS S.D., CEARLOCK J., HOFFMAN R., SPIGOS D.G., Polymeric surface modifications of tantalum stents, J. Endovasc. Surg., 1996, 3, 276–283.
- [8] WALKOWIAK B., Potential risk associated with the use of implants, Mitura S., Niedzielski P., Walkowiak B. (eds.), NANODIAM – New technologies for medical applications: studying and production of carbon surfaces allowing for controllable bioactivity, Warszawa, PWN, 2006, 179–187.
- [9] GAZICKI-LIPMAN M., Vapour deposition polymerization of paraxylylene derivatives – mechanism and applications, J. Vac. Soc. Jpn., 2007, 50, 601–608.
- [10] KAMIŃSKA M., SZYMAŃSKI J., WALKOWIAK B., Preparation of real time SPR-biosensors for study of protein deposition at titanium and NCD surfaces, Engineering of Biomaterials, 2005, 43–44, 16–20.
- [11] OKRÓJ W., KAMIŃSKA M., KLIMEK L., SZYMAŃSKI W., WALKOWIAK B., Blood platelets in contact with nanocrystalline diamond surfaces, Diam. Related. Mater, 2006, 15, 1535–1539.
- [12] JERCZYŃSKA H., BARAŃSKA P., KOZIOŁKIEWICZ W., WALKOWIAK B., PAWŁOWSKA Z., Growth of endothelial cells on surfaces of selected biomaterials, Engineering of Biomaterials, 2005, 43–44, 21–24.
- [13] WEIL M., JACOBSON M.D., RAFF M.C., Are caspases involved in the death of cells with a transcriptionally inactive nucleus? Sperm and chicken erythrocytes, Journal of Cell Science, 1998, 111, 2707–2715.
- [14] JAKUBOWSKI W., BARTOSZ G., NIEDZIELSKI P., SZYMANSKI W., WALKOWIAK B., Nanocrystalline diamond surface is resistant to bacterial colonization, Diam. Related. Mater., 2004, 13, 1761–1763.
- [15] IBNABDDJLIL M., LOH I.H., CHU C.C., BLUMENTHAL N., ALEXANDER H., TURNER D., Effect of surface plasma treatment on the chemical, physical, morphological, and mechanical properties of totally absorbable bone internal fixation devices, Journal of Biomedical Materials Research, 1994, 28, 289–301.
- [16] KAMMER S., WIEN S., KOCH K.P., ROBITZKI A., STIEGLITZ T., Coating material of parylene C as encapsulation material for biomedical micro-implants, Biomedizinische Technik, Biomedical Engineering, 2002, 47, Suppl. 1, 823–826.
- [17] LINDER M., HÜTHER S., REINACHER M., In vivo reactions in mice and in vitro reactions in feline cells to implantable microchip transponders with different surface materials, Veterinary Record, 2009, 165, 45–50.
- [18] KATOA Y.X., SAITOB I., TAKANOC H., MABUCHID K., HOSHINOE T., Comparison of neuronal cell adhesiveness of materials in the diX (Parylene) family, Neuroscience Letters, 2009, 464, 26–28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0001-0028