PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution of radiological density in bone regenerate in relation to cyclic displacements of bone fragments

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We asked how bone fragment displacement could influence the distribution of radiological density in bone regenerate formed during the process of bone lengthening. The metatarsi of 21 sheep were lengthened by 20 mm by the Ilizarov method. The bone fragments were externally fixed with a specially designed ring external fixator equipped with linear actuator driver system. The test sheep were divided into three experimental groups: the G1 and G2 groups (N = 8) and the GR group (N = 5) - the reference group. In the case of sheep from the G1 and G2 groups, the lengthening was supplemented with mechanical stimulation of the regenerate in the form of cyclic bone fragment displacements (CBFDs) with the amplitudes of 1 mm (G1) and 2 mm (G1). Mechanical stimulation was applied over 30 days for 1 h per day with a frequency of 1 Hz. Eight weeks after the procedure the sheep were sacrificed in accordance with the required procedures. The analysis of the degree of bone regenerate mineralization involved the studies based on the CT scanning. The analysis of the results obtained is based on the paramenter called the degree of regenerate mineralization (RMD). The analysis of radiological density was carried out in the selected measurement areas. Such an area was located in three horizontal zones, taking into account the regenerate height, i.e. in its middle part (half regenerate length); the top part, 2 mm from the edge of the proximal fragment; and the bottom part, 2 mm from the edge of the distal fragment. The value of the RMD parameter varies significantly, depending on the bone regenerate area. The results obtained show that the CBFD = 2 mm accelerates the rate of mineralization of an eight-week-old regenerate. In the case of CBFD = 1 mm, the mineralization rate is lower by more than a dozen per cent.
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] ARO H.T., KELLY P.J., LEWALLEN D.G., CHAO E.Y.S., The effects of physiologic dynamic compression on bone healing under external fixation, Clin. Orthop., 1990, 256, 260–273.
  • [2] ARONSON J., GOOD B., STEWART C., HARRISON B., HARP J., Preliminary studies of mineralization during distraction osteogenesis, Clinical Orthopaedics and Related Research, 1990, No. 250, 43–49.
  • [3] BĘDZIŃSKI R., FILIPIAK J., Experimental analysis of external fixators for femoral bone elongation, Acta of Bioengineering and Biomechanics, 1999, Vol. 1, No. 2, 93–105.
  • [4] Den BOER F.C., BRAMER J.A.M., PATKA P., BAKKER F.C., BARENTSEN R.H., FEILZER A.J., deLANGE E.S.M., HAARMAN H.J.T.M., Quantification of fracture healing with theedimensional computed tomography, Arch. Orthop. Trauma Surg., 1998, 117, 345–350.
  • [5] CARTER D.R., BLENMAN P.R., BEAUPRE G.S., Correlations between mechanical stress history and tissue differentiation in initial fracture healing, Journal of Orthpaedic Research, 1988, Vol. 6, 736–748.
  • [6] CLAES L., ECKERT-HUBNER K., AUGAT P., The effect of mechanical stability on local vascularization and tissue differentiation in callus healing, Journal Orthopaedic Research, 2002, 20, 1099–1105.
  • [7] CLAES L.H., WILKE H., AUGAT P., RÜBENACKER S., MARGEVICIUS K., Effect of dynamisation on gap healing of diaphysesal fractures under external fixation, Clinical Biomechanics, 1995, Vol. 10, No. 5, 227–234.
  • [8] CODIVILLA A., On the means of lengthening in the lower limbs, the muscles and tissues which are shortened through deformity, Am. J. Orthop. Surg., 1905, 2, 353–369.
  • [9] FILIPIAK J., MORASIEWICZ L., Właściwości biomechaniczne stabilizatora Ilizarowa z hybrydowym układem wszczepów, Chirurgia Narządu Ruchu i Ortopedia Polska, 2005, 70 (1), 49–56.
  • [10] FILIPIAK J., KUROPKA P., MORASIEWICZ L., KRAWCZYK A., BĘDZIŃSKI R., KURYSZKO J., WALL A., Effect of bone fragment displacements on bone regenerate formation during distraction osteogenesis, Journal of Biomechanics, 2006, Vol. 39, Suppl. 1, S9.
  • [11] GARDNER T.N., HARDY J.R.W., EVANS M., RICHARDSON J.B., KENWRIGHT J., The static and dynamic behavior of tibial fractures use to unlocking external fixators, Clin. Biomech., 1996, 11, 425–430.
  • [12] GOODSHIP A.E., KENWRIGHT J., The influence of induced micromovement upon the healing of experimental tibial fractures, J. Bone Joint Surg. Br., 1985, 67, 650–655.
  • [13] HENTE R., FUCHTMEIER B., SCHLEGEL U. ERNSTRBERGER A., PEREN S.M., The influence of cyclic compression and distraction on the healing of experimental tibial fractures, Jouranl of Orthopaedic Research, 2004, 22, 709–715.
  • [14] HUGES T.H., MAFULLI N., GREEN V., FIXSEN J.A., Imaging In bone lengthening, Clin. Orthop., 1994, 308, 50–53.
  • [15] ILIZAROV G., Clinical application of the tension–stress effect for limb lengthening, CORR, 1990, 250, 8–26.
  • [16] ILIZAROV G., The tension–stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction, CORR, 1989, 239, 263–285.
  • [17] KASPAR D., SEIDL W., NEIDLINGER-WILKE C., BECK A., CLAES L., IGNATIUS A., Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain, Journal of Biomechanics, 2002, 35, 873–880.
  • [18] KRAWCZYK A., KUROPKA P., KURYSZKO J., WALL A., DRAGAN SZ., KULEJ M., Experimental studies on the effect of osteotomy technique on the bone regeneration in distraction osteogenesis, Bone, 2007, 40, 781–79.
  • [19] KURYSZKO J., KUROPKA P., JĘDRZEJOWSKA I., Distraction osteogenesis and fracture healing. Differences and similarities, Acta of Bioengineering and Biomechanics, 2000, Vol. 2, No. 2, 83–88.
  • [20] LOBOA E.G., FANG T.D., WARREN S.M., LINDSEY D.P., FONG K.D., LONGAKER M.T., CARTER D.R., Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model, Bone, 2004, 34, 336–343.
  • [21] MAFFULLI N., CHENG J.C.Y., SHER A., NG B.K.W., NG E., Bone mineralization at the calloatasis site after completion of lengthening, Bone, 1999, Vol. 25, No. 3, 333–338.
  • [22] MORGAN E.F., LONGAKER M.T., CARTER D.R., Relationships between tissue dilatation and differentiation in distraction osteogenesis, Matrix Biology, 2006, 25, 94–103.
  • [23] PERREN S.M., Physical and biological aspects of fracture healing with special reference to initial fixation, Clin. Orthop. Rel. Res., 1979, 138, 175–196.
  • [24] PRENDERGAST P.J., HUISKES R., SØBALLE K., Biophysical stimuli on cells during tissue differentiation at implant interfaces, J. Biomechanics, 1997, 30, 539–548.
  • [25] REICHEL H., LEBEK S., ALTER C., HEIN W., Biomechanical and densitometric bone properties after callus distraction in sheep, Clinical Orthopaedics, 1998, 357, 237–246.
  • [26] RICHARDS M., HUIBREGTSE B.A., CAPLAN A.I., GOULET J.A., GOLDSTEIN S.A., A marrow-derived progenito cell injections enhance new bone formation during distraction, J. Orthop. Res., 1999, 17, 900–908.
  • [27] SALMS M.G., NIKIFORDIS G., KOSTI P., LAMBIRIS E., Estimation of artifacts induced by the Ilizarov device in quantitative computed tomographic analysis of tibiale, Injury, 1998, 29, 711–716.
  • [28] SWENNEN G.R.J., EULZER C., SCHUTYSER F., HUTMMANN C., SCHLIEPHAKE H., Assessment of the distraction regenerate using three-dimensional quantitative computer tomography, Int. J. Oral Maxillofac. Surg., 2005, 34, 64–73.
  • [29] WOLF S., JANOUSEK A., PFEIL J., VEITH W., HAAS F., DUDA G., The effects external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation, Clinical Biomechanics, 1998, 13, 359–364.
  • [30] YAMAJI T., ANDO K., WOLF S., AUGAT P., CLAES L., The effect of micromovement on callus formation, Journal of Orthopaedic Science, 2001, 6, 571–575.
  • [31] YANG L., NAYAGAM S., SALEH M., Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators, Clinical Biomechanics, 2003, 18, 166–172.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBB-0001-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.