Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on constitutive equation that models bone tissue

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
A method for identifying viscoelastic constitutive equations for bone is developed. In the method, anisotropy, non-homogeneity and bone remodelling are taken into consideration. The equations correspond to monotropic rheological model of bone. In order to calculate the material parameters of elasticity and viscosity, a new algorithm is developed, in which the results of creep compression and shear tests are used. The way of determining the material constants of elasticity and viscoelasticity for bone in the areas that are crucial in strain and stress analysis is shown a well. The strength experiments (tests) and creep tests were performed on bone samples extracted from the femur of calf. The method of bone modelling in terms of rheology is the following: bone samples are properly prepared from biological material. For given bone samples, which have more or less the same density, three independent short-term creep tests are carried out. The results of the creep tests permit us to determine five elastic constants and viscoelastic constants of a monotropic material [1]. In order to describe rheological processes in terms of structural models, fractional exponential functions and normal exponential functions are used. The constitutive equations are formulated in the compliance form. The computer program that executes the algorithm of elastic and viscoelastic constant determination is used.
Opis fizyczny
Bibliogr. 26 poz., rys.
  • [1] KLASZTORNY M., GIELETA R., The HWKK rheological model for resins, J. of Theoretical and Applied Mechanics, 2002, 40, 3, 939–960.
  • [2] AAMODT A. et al., Changes in proximal femoral strain after insertion of uncemented standard and customised femoral stems. An experimental study in human femora, J. Bone Joint Surg., 2001, 83, 6, 921–929.
  • [3] BAGGE M., A model of bone adaptation as an optimization process, J. Biomech., 2000, 33, 1349–1357.
  • [4] DOBLARÉ M., GARCÍA J.M., Anisotropic bone remodelling model based on a continuum damage–repair theory, J. Biomechanics, 2002, 35, 1–17.
  • [5] HART R.T., Bone modeling and remodeling: theories and computation, [in:] Bone Mechanics, S.C. Cowin (Ed.), CRC Press, Boca Raton, 2001.
  • [6] HUISKES R., WEINANS H., GROOTENBOER H.J., DALSTRA M., FUDALA B., SLOOF T.J., Adaptive bone-remodeling theory applied to prosthetic-design analysis, J. Biomechanics, 1987, 20, 1135–1150.
  • [7] LAINE H.J. et al., The effects of cementless femoral stem shape and proximal surface texture on “fit-and-fill” characteristics and on bone remodelling, Int. Orthop., 2000, 24, 4, 184–190.
  • [8] MULLENDER M.G., HUISKES R., Proposal for the regulatory mechanisms of Wolff’s law, J. Orthop. Res., 1995, 13, 1059–1062.
  • [9] FYHRIE O.P., SCHAFFER M.B., The adaptation of bone apparent density to applied load, J. Biomechanics, 1995, 28, 2, 135–146.
  • [10] COWIN S.C., Bone stress adaptation models, J. Biomech. Eng., 1993, 115, 528–533.
  • [11] WEINANS H., HUISKES R., GROOTENBOER H.J., The behaviour of adaptive bone-remodeling simulation models, J. Biomechanics, 1992, 25, 1425–1441.
  • [12] LEKSZYCKI T., On simple model of self-adapting bone material, [in:] Bio Solid Mechanics, P. Pedersen, M.P., Bendsøe (Eds.), Kluwer Academic Press, 1999, 265–276.
  • [13] PAWLIKOWSKI M., SKALSKI K., BOSSAK M., PISZCZATOWSKI S., Rheological effects and bone remodelling phenomenon in the hip joint implantation, First MIT Conference on Computational Fluid and Solid Mechanics, June 12–14, 2001, Elsevier Science Ltd., 399–402.
  • [14] SKALSKI K., PAWLIKOWSKI M., ODDOU C., SŁUGOCKI G.M., Stress–strain analysis in the bone–implant system including remodelling phenomenon, 33rd Solid Mechanics Conference, SOLMECH 2000, Zakopane, 5–9.09.2000, 353–354.
  • [15] PAWLIKOWSKI M., SKALSKI K., HARABURDA M., Process of hip joint prosthesis design including bone remodeling phenomenon, Computers and Structures, 2003, 81(8–11), 887–893.
  • [16] COWIN S.C., HEGEDUS D.H., Bone remodelling I: theory of adaptive elasticity, J. Elasticity, 1973, 6(3), 313–326.
  • [17] COWIN S.C., NACHLINGER R.R., Bone remodeling III: uniqueness and stability in adaptive elasticity theory, J. Elasticity, 1978, 8(3), 285–295.
  • [18] HEGEDUS D.H., COWIN S.C., Bone remodeling II: small strain adaptive elasticity, J. Elasticity, 1976, 6(4), 337–352.
  • [19] WEINANS H. SUMNER D.R., IGLORIA R., NATARAJAN R.N., Sensitivity of periprosthetic stress-sheilding to load and the bone density–modulus relationship in subject-specific finite element models, J. Biomechanics, 2000, 33, 809–817.
  • [20] ASHMAN R.B. et al., A continuous wave technique for the measurement of the elastic properties of cortical bone, J. Biomechanics, 1984, 17, 349–361.
  • [21] KNETS I., Viscoelastic properties of compact bone tissue, Lecture at the CISM Course on Bone Mechanics, Udine, Italy, 1987.
  • [22] REILY D.T., BURSTEIN A.H., The elastic and ultimate properties of compact bone tissue, J. Biomechanics, 1975, 8, 393–405.
  • [23] SASAKI N. et al., Stress relaxation function of bone and bone collagen, J. Biomechanics, 1993, 26, 1269–1376.
  • [24] DELIGIANNI D.D. et al., Stress relaxation behaviour of trabecular bone specimens, J. Biomechanics, 1994, 27, 1469–1476.
  • [25] ARNDT A., WESTBLAD P., EKENMAN I., HALVORSEN K., LUNDBERG A., An in vitro comparison of bone deformation measured with surface and staple mounted strain gauges, J. Biomechanics, 1999, 32, 1359–1363.
  • [26] KLASZTORNY M., Constitutive modelling of resins in compliance domain, J. Mechanics of Composite Materials, 2004, 40, 4, 349–358.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.