PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adwent metod teledetekcji aktywnej do monitorowania zjawisk przyrodniczych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The advent of the active remote sensing for monitoring of natural environment
Języki publikacji
PL
Abstrakty
PL
Ostatnie dwudziestolecie rozwoju technologii pozyskiwania danych o zjawiskach przyrodniczych można uznać za adwent metod teledetekcji aktywnej. Niezwykle spektakularnym wytworem tego okresu jest globalny numeryczny model pokrycia obszarów lądowych naszej planety, znany pod angielskim skrótem SRTM. SRTM powstał przy wykorzystaniu instrumentu zainstalowanego na pokładzie amerykańskiego wahadłowca Endeavour i z wykorzystaniem metody interferometrii radarowej. Metoda ta jest jedną z metod teledetekcji aktywnej, która bazuje na wykorzystaniu promieniowania mikrofalowego emitowanego i odbieranego przez satelitę. Pomiary mogą być dokonywane w każdych warunkach meteorologicznych i niezależnie od oświetlenia słonecznego. Powodzenie programu SRTM oraz unikalny charakter dostarczanych danych stały się poważnym czynnkiem stymulującym rozwój systemów teledetekcji aktywnej w krajach takich jak Japonia, Kanada, Niemcy, USA i Włochy. Mimo że w wielu sytuacjach metody teledetekcji aktywnej są nadal na etapie eksperymentów, już teraz można z całą pewnością stwierdzić, że obecnie orbitujące satelity takie jak ALOS PALSAR, TerraSAR-X, TanDEM-X, RADARSAT, ERS, ENVISAT-ASAR oraz szereg planowanych misji dostarczają i będą dostarczały cennych danych, pozwalających na uzupełniające, a czasami i nowe spojrzenie na zjawiska przyrodnicze. Ważąc powyższe, wydaje się pożytecznym dokonanie przeglądu najważniejszych zagadnień i metod teledetekcji aktywnej. Jest to celem niniejszego opracowania.
EN
The last thirty years of environment monitoring witnessed a rapid development of the active remote sensing technology. Therefore, it is appropriate to consider this period as an advent of the active remote sensing. This paper offers a quick outline of the basics terms, approaches and typical applications of the technology which includes radar, synthetic aperture radar, synthetic aperture radar interferometry and methods which are derived from the synthetic aperture radar interferometry including the differential synthetic aperture radar interferometry and permanent scatterers. The polarimetric synthetic aperture radar interferometry and LiDAR were omitted from this review.
Słowa kluczowe
Rocznik
Strony
3--19
Opis fizyczny
Bibliogr. 41 poz., il.
Twórcy
autor
  • Universiti Brunei Darusslam
Bibliografia
  • Amini J., Sumantyo J.T.S., 2009. Employing a Method on SAR and Optical Images for Forest Biomass Estimation. Geoscience and Remote Sensing, IEEE Transactions on 47, 4020-4026.
  • Bęcek K., 2006. W 10 dni Dookoła Świata, Geodeta, Vol. 132, Nr 5.
  • Becek K., 2008. Investigating error structure of shuttle radar topography mission elevation data product. Geophys. Res. Lett. 35, L15403.
  • Bęcek, K., 2010. Biomass Representation in Synthetic Aperture Radar Interferometry Data Sets. Rozprawa habilitacyjna, Uniwersytet Techniczny w Dreźnie, październik (w druku).
  • Brown C.G., Sarabandi K., Pierce L.E., 2010. Model-Based Estimation of Forest Canopy Height in Red and Austrian Pine Stands Using Shuttle Radar Topography Mission and Ancillary Data: A Proof-of-Concept Study. Geoscience and Remote Sensing, IEEE Transactions on 48, 1105-1118.
  • Chang A.T.C., Atwater S.G., Salomonson V.V., Estes J.E., Simonett D.S., Bryan M.L., 1980. L-Band Radar Sensing of Soil Moisture. Geoscience and Remote Sensing, IEEE Transactions on GE-18, 303-310.
  • Chini M., Atzori S., Trasatti E., Bignami C., Kyriakopoulos C., Tolomei C., Stramondo S., 2010. The May 12, 2008, (Mw 7.9) Sichuan Earthquake (China): Multiframe ALOS-PALSAR DInSAR Analysis of Coseismic Deformation. Geoscience and Remote Sensing Letters, IEEE 7, 266-270.
  • Curlander J.C., McDonough R.N., 1991. Synthetic Aperture Radar: Systems and Signal Processing. John Wiley, Sons, Inc. New York, Chinchester, Brisbane, Toronto, Singapore.
  • Curlander J.C, Holt B., Hussey K., 1985. Determination of sea ice motion using digital SAR imagery. Oceanic Engineering, IEEE Journal of 10, 358-367.
  • Cutrona L.J., Leith E.N., Palermo C., Porcello L.J., 1960. Optical data processing and filtering systems. Information Theory, IRE Transactions on, 6(3), 386-400.
  • Cutrona L.J., Leith E.N., Porcello L.J., Vivian W.E., 1966. On the Application of Coherent Optical Processing Techniques to Synthetic-Aperture Radar. Proceedings of the IEEE, 54(8), 10261032.
  • Dehls J. F., Basilico M., Colesanti C., 2002. Ground deformation monitoring in the Ranafjord area of Norway by means of the permanent scatterers technique. Geoscience and Remote Sensing Symposium, IGARSS '02, 203-207.
  • Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., Alsdorf D., 2007. The Shuttle Radar Topography Mission. Rev. Geophys., Vol. 45, RG2004.
  • Ferretti A., Ferrucci F., Prati C., Rocca F., 2000. SAR analysis of building collapse by means of the permanent scatterers technique. Geoscience and Remote Sensing Symposium, IGARSS 2000. IEEE 2000 International, 3219-3221.
  • Ferretti A., Prati C., Rocca F., 2001. Permanent scatterers in SAR interferometry. Geoscience and Remote Sensing, IEEE Transactions on 39, 8-20.
  • Imhoff M.L., Story M., Vermillion C., Khan F., Polcyn F., 1986. Forest Canopy Characterization and Vegetation Penetration Assessment with Space-Borne Radar. Geoscience and Remote Sensing, IEEE Transactions on GE-24, 535-542.
  • Imhoff M.L., 1995. Radar backscatter and biomass saturation: ramifications for global biomass inventory. Geoscience and Remote Sensing, IEEE Transactions on 33, 511-518.
  • Kim S., Joong-Sun W., Jeong W.K. Moon W.M., 2001. Application of differential SAR interferometry over the Baegdu stratovolcanic mountain. Geoscience and Remote Sensing Symposium, IGARSS 2001. IEEE 2001 International, 2424-2426.
  • Kingsley S., Quegan S., 1993. Understanding Radar System. McGraw-Hill Book Company, Singapore.
  • Le Toan T., Beaudoin A., Riom J., Guyon D., 1992. Relating forest biomass to SAR data. Geoscience and Remote Sensing, IEEE Transactions on 30, 403-411.
  • Lipa B., Crissman R., Barrick D., 1986. HF radar observations of Arctic pack-ice breakup. Oceanic Engineering, IEEE Journal of 11, 270-275.
  • Martinez-Vazquez A., Fortuny-Guasch J., 2008. A GB-SAR Processor for Snow Avalanche Identification. Geoscience and Remote Sensing, IEEE Transactions on 46, 3948-3956.
  • Marzano F.S., Weinman J.A., 2008. Inversion of Spaceborne X-Band Synthetic Aperture Radar Measurements for Precipitation Remote Sensing Over Land. Geoscience and Remote Sensing, IEEE Transactions on 46, 3472-3487.
  • Mason D.C., Speck R., Devereux B., Schumann G.J.P., Neal J.C., Bates, P.D., 2010. Flood Detection in Urban Areas Using TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on 48, 882-894.
  • Mattia F., Floury N., Moreira A., 2009. Foreword to the Special Issue on Retrieval of Bio- and Geophysical Parameters From SAR Data for Land Applications. Geoscience and Remote Sensing, IEEE Transactions on 47, 379-380.
  • McCandles S.W. Jr., 2003. The origin, evolution and legacy of SEASAT, 32-34.
  • Müllenhoff O., 2003. Evaluation of Multi-Frequency and Multi-Polarization Airborne SAR data for Marsh Land and River Dyke Analysis. In Fritsch, D. (Ed.). Photogrammetric Week'03, Herbert Wichmann Verlag, Heidelberg.
  • Nichols A.D., Wilhelm J.W., Gaffield T.W., Inkster D.R., Leung S.K., 1986. A SAR for Real-Time Ice Reconnaissance. Geoscience and Remote Sensing, IEEE Transactions on GE-24, 383-389.
  • Reppucci A., Lehner S., Schulz-Stellenfleth J., Brusch S., 2010. Tropical Cyclone Intensity Estimated From Wide-Swath SAR Images. Geoscience and Remote Sensing, IEEE Transactions on 48, 1639-1649.
  • Rosen P.A., Hensley S., Joughin I.R., Li F.K., Madsen S.N., Rodriguez E., Goldstein R.M., 2000. Synthetic aperture radar interferometry. Proceedings of the IEEE 88, 333-382.
  • Short N.M.Sr., 2010. Remote Sensing Tutorial. Źródło internetowe:, http://rst.gsfc.nasa.gov/Front/tofc.html.
  • Sieber A.J., Trevett J.W., 1983. Comparison of Multifrequency Band Radars for Crop Classification. Geoscience and Remote Sensing, IEEE Transactions on GE-21, 285-294.
  • Skolnik M.I., 1988. Introduction to Radar Systems, 2nd ed. McGraw-Hill Company, Singapore.
  • Smit M.K., 1979. Preliminary Results of an Investigation into the Potential Application of X-Band SLR Images for Crop-Type Inventory Purposes. Geoscience Electronics, IEEE Transactions on 17, 303-308.
  • Tanase M.A., Perez-Cabello F., de la Riva J., Santoro M., 2010. TerraSAR-X Data for Burn Severity Evaluation in Mediterranean Forests on Sloped Terrain. Geoscience and Remote Sensing, IEEE Transactions on 48, 917-929.
  • Tebaldini S., 2010. Single and Multipolarimetric SAR Tomography of Forested Areas: A Parametric Approach. Geoscience and Remote Sensing, IEEE Transactions on 48, 2375-2387.
  • Ulaby F.T., Brisco B., Dobson C., 1983. Improved Spatial Mapping of Rainfall Events with Spaceborne SAR Imagery. Geoscience and Remote Sensing, IEEE Transactions on GE-21, 118-121.
  • Wang Z., Liu G., Chen T., Zhang J., Huang G., 2010. Detecting and assessing the land subsidence in coal mining area using PALSAR data based on D-InSAR technique, V3-222.
  • Wangensteen B., Weydahl D. J., Hagen J.O., 1999. Mapping glacier velocities at Spitsbergen using ERS tandem SAR data, 1954-1956.
  • Way J., Smith E.A., 1991. The evolution of synthetic aperture radar systems and their progression to the EOS SAR. Geoscience and Remote Sensing, IEEE Transactions on 29, 962-985.
  • Zebker H.A., Rosen P.A., Goldstein R.M., Gabriel A. & Werner C.L., 1994. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J. Geophys. Res. 99, 19617-19634.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0015-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.