Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Firstly, the way of implementing approximatively the initial rollback of the natural tibiofemoral joint (TFJ) in a total knee replacement (AEQUOS G1 TKR) is discussed. By configuration of the curvatures of the medial and lateral articulating surfaces a cam gear mechanism with positive drive can be installed, which works under force closure of the femoral and tibial surfaces. Briefly the geometric design features in flexion/extension are described and construction-conditioned kinematical and functional properties that arise are discussed. Due to a positive drive of the cam gear under the force closure during the stance phase of gait the articulating surfaces predominantly roll. As a result of rolling, a sliding friction is avoided, thus the resistance to motion is reduced during the stance phase. Secondly, in vivo fluoroscopic measurements of the patella tendon angle during flexion/extension are presented. The patella tendon angle/ knee flexion angle characteristic and the kinematic profile in trend were similar to those observed in the native knee during gait (0°–60°).
Czasopismo
Rocznik
Tom
Strony
35--42
Opis fizyczny
Bibliogr. 26 poz., il.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
- Department of Trauma Surgery, Plastic and Reconstructive Surgery, University of Göttingen, Germany, martin.wachowski@web.de
Bibliografia
- [1] PANDIT H., WARD T., HOLLINGHURST D., BEARD D.J., GILL H.S., THOMAS N.P., MURRAY D.W., Influence of surface geometry and the cam-post mechanism on the kinematics of total knee replacement, J. Bone Joint Surg. Br., 2005, 87, 940-945.
- [2] FISCHER O., Kinematik organischer Gelenke, Braunschweig, Vieweg-Verlag, 1907, 189.
- [3] NAGERL H., KUBEIN-MEESENBURG D., COTTA H., FANGHANEL J., Biomechanical principles of diarthroses and synarthroses. III: Mechanical aspects of the tibiofemoral joint and role of the cruciate ligaments, Z. Orthop. Ihre Grenzgeb., 1993, 131, 385-396.
- [4] NAGERL H., WALTERS J., FROSCH K.H., DUMONT C., KUBEINMEESENBURG D., FANGHANEL J., WACHOWSKI M.M., Knee motion analysis of the non-loaded and loaded knee: a re-look at rolling and sliding, J. Physiol. Pharmacol., 2009, 60, Suppl. 8, 69-72.
- [5] MEYER H.H., The roll-glide value as a motion parameter of biological curved joints exemplified by the human knee joint, Z. Orthop. Ihre Grenzgeb., 1989, 127, 716-721.
- [6] ZUPPINGER H., Die active Flexion im unbelasteten Kniegelenk, Wiesbaden, Züricher Habil Schr Bergmann Verlag, 1904.
- [7] IWAKI H., PINSKEROVA V., FREEMAN M.A., Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee, J. Bone Joint Surg. Br., 2000, 82, 1189-1195.
- [8] PINSKEROVA V., IWAKI A., FREEMAN M., The shapes and relative movements of the femur and tibia in the unloaded cadaveric knee: A study using MRI as an anatomical tool, [in:] Insall J.N., Scott R., Saunders W.B. (editors), Surgery of the knee, III ed., Philadelphia, 2001.
- [9] PINSKEROVA V., JOHAL P., NAKAGAWA S., SOSNA A., WILLIAMS A., GEDROYC W., FREEMAN M.A., Does the femur roll-back with flexion? J. Bone Joint Surg. Br., 2004, 86, 925-931.
- [10] NÄGERL H., STAUFFENBERG C., FROSCH K.H., FIEDLER C., FANGHÄNEL J., KUBEIN-MEESENBURG D., WACHOWSKI M.M., Total knee replacement with natural rollback, [in:] Będziński R. (editor), Proceedings of 27th Danubia-Adria Symposium on Advances in Experimental Mechanics, Wrocław, 2010, 147-149.
- [11] WACHOWSKI M.M., WALDE T.A., BALCAREK P., SCHÜTTRUMPF J.P., FROSEK S., STAUFFENBERG C., FROSCH K.H., FIEDLER C., FANGHÄNEL J., KUBEIN-MEESENBURG D., NÄGERL H., Total knee replacement with natural rollback, Ann. Anatomy, 2011, May 3.
- [12] NAGERL H., FROSCH K.H., WACHOWSKI M.M., DUMONT C., ABICHT C., ADAM P., KUBEIN-MEESENBURG D., A novel total knee replacement by rolling articulating surfaces. In vivo functional measurements and tests, Acta Bioeng. Biomech., 2008, 10, 55-60.
- [13] FROSCH K.H., FLOERKEMEIER T., ABICHT C., ADAM P., DATHE H., FANGHANEL J., STURMER K.M., KUBEINMEESENBURG D., NAGERL H., A novel knee endoprosthesis with a physiological joint shape: Part 1: Biomechanical basics and tribological studies, Unfallchirurg, 2009, 112, 168-175.
- [14] FROSCH K.H., NAGERL H., KUBEIN-MEESENBURG D., BUCHHOLZ J., DORNER J., DATHE H., HELLERER O., DUMONT C., STURMER K.M., A new total knee arthroplasty with physiologic ally shaped surfaces: Part 2: First clinical results, Unfallchirurg, 2009, 112, 176-184.
- [15] FLOERKEMEIER T., FROSCH K.H., WACHOWSKI M., KUBEINMEESENBURG D., GEZZI R., FANGHANEL J., STURMER K.M., NAGERL H., Physiologically shaped knee arthroplasty induces natural roll-back, Technol. Health Care, 2010, 19, 91-102.
- [16] REES J.L., BEARD D.J., PRICE A.J., GILL H.S., MCLARDY-SMITH P., DODD C.A., MURRAY D.W., Real in vivo kinematic differences between mobile-bearing and fixed-bearing total knee arthroplasties, Clin. Orthop. Relat. Res., 2005, 204-209.
- [17] van EIJDEN T.M., de BOER W., WEIJS W.A., The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle, J. Biomech., 1985, 18, 803-809.
- [18] BEYER R., Technische Raumkinematik. Lehr-, Hand- und Übungsbuch zur Analyse räumlicher Getriebe, Berlin/Göttingen/ Heidelberg, Springer-Verlag, 1963.
- [19] LOUIE J.K., MOTE C.D., Jr. Contribution of the musculature to rotatory laxity and torsional stiffness at the knee, J. Biomech., 1987, 20, 281-300.
- [20] MARKOLF K.L., BARGAR W.L., SHOEMAKER S.C., AMSTUTZ H.C., The role of joint load in knee stability, J. Bone Joint Surg. Am., 1981, 63, 570-585.
- [21] KOH T.J., GRABINER M.D., de SWART R.J., In vivo tracking of the human patella, J. Biomech., 1992, 25, 637-643.
- [22] WALKER P.S., HAJEK J.V., The load-bearing area in the knee joint, J. Biomech., 1972, 5, 581-589.
- [23] WISMANS J., VELDPAUS F., JANSSEN J., HUSON A., STRUBEN P., A three-dimensional mathematical model of the kneejoint, J. Biomech., 1980, 13, 677-685.
- [24] WEBER W., WEBER F., Mechanics of the human walking apparatus. Section 4: on the knee, Berlin, Springer-Verlag, 1992.
- [25] GALETZ M.C., UTH T., WIMMER M.A., ADAM P., GLATZEL U., Determination of the temperature rise within UHMWPE tibial components during tribological loading, Acta Biomater., 2010, 6, 552-562.
- [26] PANDIT H., GILL H.S., MURRAY D.W., private communication.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0012-0042