Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fourier Transform Near Infrared Raman Spectroscopy has been used to monitor the molecular changes of collagen in a tendon subjected to strain. In the Raman spectrum of the unstrained tendon, some protein bands, mainly assigned to collagen, can be observed: amide I (1666 cm–1) and III (1266 and 1248 cm–1) vibrational modes and skeletal (C–C) stretching vibrations (816 and 940 cm–1). The position of these bands is changing with the increasing strain values. It is concluded that elastin and non-helical domains of collagen are initially involved in the load transfer and triple helices of collagen are gradually joining this process.
Czasopismo
Rocznik
Tom
Strony
55--62
Opis fizyczny
Bibliogr. 38 poz., il.
Twórcy
autor
autor
autor
autor
autor
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wrocław, Poland, marlena.gasior-glogowska@pwr.wroc.pl
Bibliografia
- [1] MOGILNER I.G., RUDERMAN G., GRIGERA J.R., Collagen stability, hydration and native state, Journal of Molecular Graphics and Modelling, 2002, 21, 209-213.
- [2] SILVER F.H., FREEMAN J.W., SEEHRA G.P., Collagen selfassembly and the development of tendon mechanical properties, Journal of Biomechanics, 2003, 36, 1529-1553.
- [3] GELSE K., PÖSCHL E., AIGNER T., Collagens - structure, function, and biosynthesis, Advanced Drug Delivery Reviews, 2003, 55, 1531-1546.
- [4] KADLER K.E., HOLMES D.F., TROTTER J.A., CHAPMAN J.A., Collagen fibril formation, Biochemical Journal, 1996, 316, 1-11.
- [5] RICARD-BLUM S., RUGGIERO F., The collagen superfamily: from the extracellular matrix to cell membrane, Pathologie Biologie, 2005, 53, 430-442.
- [6] PERSIKOV A.V., RAMSHAW J., KIRKPATRICK A., BRODSKY B., Amino acid propensities for the collagen triple-helix, Biochemistry, 2000, 39, 14960-14967.
- [7] PENTEADO S.G., MENESES C.S, OLIVEIRA LOBO A., MARTIN A.A., SILVA MARTINHO H., Diagnosis of rotator cuff lesions by FT-Raman spectroscopy: a biochemical study, P SPEC 2006 Shedding Light on Disease: Optical Diagnosis for the New Millenium, 4th International Conference, 20-24th May, 2006, Heidelberg, Germany.
- [8] WANG Y.N., GALIOTIS C., BADER D.L., Determination of molecular changes in soft tissues under strain using laser Raman microscopy, Journal of Biomechanics, 2000, 33, 483-486.
- [9] POLLOCK C.M., SHADWICK R.E., Relationship between body mass and biomechanical properties of limb tendons in adult mammals, American Journal of Physiology, 1994, 266, R1016-R1021.
- [10] DOBRIN P., Mechanical properties of arteries, Physiological Reviews, 1978, 58, 397-460.
- [11] COX R., Passive mechanics and connective tissue composition of canine arteries, American Journal of Physiology, 1978, 234, H533-H541.
- [12] ARMENTANO R., LEVENSON J., BARRA J., FISCHER E., BREITBART G., PICHEL R., SIMON A., Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs, American Journal of Physiology, 1991, 260, H1870-H1877.
- [13] GACKO M., Tkankowy i osoczowy układ homeostatyczny w tętniaku aorty, Postępy Nauk Medycznych, 2001, 2, 30-38.
- [14] BEANA J.R., LENDL B., Raman spectroscopy in chemical bioanalysis, Current Opinion in Chemical Biology, 2004, 8, 534-539.
- [15] MANOHARAN R., WANG Y., FELD M.S., Histochemical analysis of biological tissues using Raman spectroscopy, Spectrochimica Acta A, 1996, 52, 215-249.
- [16] SCHRADER B., DIPPEL B., ERB I., KELLER S., LÖCHTE T., TASCH E., WESSEL S., NIR Raman spectroscopy in medicine and biology: results and aspects, Journal of Molecular Structure, 1999, 480-481, 21-32.
- [17] PAPPAS D., SMITH B.W., WINEFORDNER J.D., Raman spectroscopy in bioanalysis, Talanta, 2000, 51, 131-144.
- [18] OLSZTYŃSKA-JANUS S., SZYMBORSKA S., KOMOROWSKA M., LIPIŃSKI J., Usefulness of spectroscopy for biomedical engineering, Acta of Bioengineering and Biomechanics, 2008, 10, 3, 45-49.
- [19] CHURCH J.S., CORINO G.L., WOODHEAD A.L., The effects of stretching on wool fibres as monitored by FT-Raman spectroscopy, Journal of Molecular Structure, 1998, 440, 15-23.
- [20] SIRICHAISIT J., YOUNG R. J., VOLLRATH F., Molecular deformation in spider dragline silk subjected to stress, Polymer, 2000, 41, 1223-1227.
- [21] HANUZA J., MĄCZKA M., GĄSIOR-GŁOGOWSKA M., KOMOROWSKA M., BĘDZIŃSKI R., SZOTEK S., MAKSYMOWICZ K., HERMANOWICZ K., FT-Raman spectroscopic study of thoracic aortic wall subjected to uniaxial stress, Journal of Raman Spectroscopy, 2010, 41, 1163-1169.
- [22] DONG R., YAN X., PENG X., LIU S., Temperature-dependent Raman spectra of collagen and DNA, Spectrochimica Acta A, 2004, 60, 557-561.
- [23] AKHTAR W., EDWARDS H.G.M., Fourier-transform Raman spectroscopy of mammalian and aviac keratotic biopolymers, Spectrochimica Acta Part A, 1997, 53, 81-90.
- [24] IKOMA T., KOBAYASHI H., TANAKA J., WALSH D., MANN S., Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromics niloticas, International Journal of Biological Macromolecules, 2003, 32, 199-203.
- [25] DEBELLE L., ALIX A.J.P., WEI S.M., JACOB M.-P., HUVENNE J.-P., BERJOT M., The secondary structure and architecture of human elastin, European Journal of Biochemistry, 1998, 258, 533-539.
- [26] SHIM M.G., WILSON B.C., Development of an in vivo Raman spectroscopic system for diagnostic applications, Journal of Raman Spectroscopy, 1997, 28, 131-142.
- [27] COLOMBAN PH., DINH H.M., RIAND J., PRINSLOO L.C., MAUCHAMP B., Nanomechanics of single silkworm and spider fibres: a Raman and micro-mechanical in situ study of the conformation change with stress, Journal of Raman Spectroscopy, 2008, 391749-1764.
- [28] KOBIELARZ M., SZOTEK S., KUROPKA P., MAKSYMOWICZ K., MORAWSKA M., Mechanical properties of the cerebrum: application in neurosurgical procedures, Strain, (doi: 10.1111/j.1475-1305.2009.00695.x, on-line available).
- [29] MATTHEWS L.S., ELLIS D., Viscoelastic properties of cattendon: effects of time after death and preservation by freezing, Journal of Biomechanics, 1968, 1, 65-71.
- [30] OHNO K., YASUDA K., YAMATO N., KANADA K., HAYASHI K., Biomechanical and histological changes in the patellar tendon after in situ freezing, Clinical Biomechanics, 1996, 11, 207-213.
- [31] JANKO M., DAVYDOVSKAYA P., BAUER M., ZINK A., STARK R.W., Anisotropic Raman scattering in collagen bundles, Optics Letters, 2010, 35, 2765-2767.
- [32] HUANG T.F., PERRY S.M., SOSLOWSKY L.J., The effect of overuse activity on Achilles tendon in an animal model: a biomechanical study, Annals of Biomedical Engineering, 2004, 32, 336-341.
- [33] JOHNSON G.A., TRAMAGLINI D.M., LEVINE R.E., OHNO K., CHOI N.Y., WOO S.L.Y., Age related changes in the tensile and viscoelastic properties of the human patellar tendon, Journal of Orthopaedic Research, 1994, 12, 796-803.
- [34] MAGANARIS C., PAUL J., Tensile properties of the in vivo human gastrocnemius tendon, Journal of Biomechanics, 2002, 35, 1639-1646.
- [35] SHADWICK R.E., Elastic energy storage in tendons: mechanical differences related to function and age, Journal of Applied Physiology, 1990, 68, 1033-1040.
- [36] BAILEY A.J., PAUL R.G., KNOTT L., Mechanism of maturation and ageing of collagen, Mechanism of Ageing and Development, 1998, 106, 1-56.
- [37] GENTLEMAN E., LAY A.N., DICKERSON A., NAUMAN E.A., LIVESAY G.A., DEE K.C., Mechanical characterization of collagen fibers and scaffolds for tissue engineering, Biomaterials, 2003, 24, 3805-3813.
- [38] TRĘBACZ H., Effect of immobilization in a lengthened position on mechanical properties of the Achilles tendon in growing rats, Acta of Bioengineering and Biomechanics, 2005, 7, 2, 80-85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0009-0040