PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear force allowance in lumbar spine under follower load in neutral standing posture

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been shown experimentally that the load carrying capacity of the spine significantly increases when compressive loads are carried along the follower load (FL) direction. However, it is necessary to modify the current FL concept because a certain amount of shear force is produced during activities in daily life. In this study, a clinically allowable range of shear force was investigated using the modified FL concept. The shear force allowance was defined as the maximum ratio of the shear force to the follower force at each vertebral body center. Then, it was shown that the appropriate shear force allowance was within approximately 0.2 ~ 0.5 from the investigation of the follower forces, the shear forces, and the muscle force coordination. The predicted shear force allowance indicated that the resultant joint force is directed to a certain inside region between a half vertebral body and whole vertebral body.
Rocznik
Strony
49--53
Opis fizyczny
Bibliogr. 24 poz., il.
Twórcy
autor
autor
autor
Bibliografia
  • [1] PATWARDHAN A.G., HAVEY R.M., GHANAYEM A.J., DIENER H., MEADE K.P., DUNLAP B., HODGES S.D., Load-carrying capacity of the human cervical spine in compression is increased under a follower load, Spine, 2000, 25, 1548-1554.
  • [2] PATWARDHAN A.G., HAVEY R.M., MEADE K.P., LEE B., DUNLAP B., A follower load increases the load-carrying capacity of the lumbar spine in compression, Spine, 1999, 24, 1003-1009.
  • [3] STANLEY S.K., GHANAYEM A.J., VORONOV L.I., HAVEY R.M., PAXINOS O., CARANDANG G., ZINDRICK M.R., PATWARDHAN A.G., Flexion-extension response of the thoracolumbar spine under compressive follower preload, Spine, 2004, 29, E510-E514.
  • [4] PATWARDHAN A.G., MEADE K.P., LEE B., A frontal plane model of the lumbar spine subjected to a follower load: implications for the role of muscles, J. Biomech. Eng. - Trans. ASME, 2001, 123, 212-217.
  • [5] KIM Y.H., KIM K., Numerical analysis on quantitative role of trunk muscles in spinal stabilization, JSME Int. J. Ser. C, 2004, 47, 1062-1069.
  • [6] KIM K., KIM Y.H., LEE S.K., Increase of load carrying capacity under follower load generated by trunk muscles in lumbar spine, Proc. Inst. Mech. Eng. Part H - J. Eng. Med., 2007, 221, 229-235.
  • [7] KIM K., KIM Y.H., Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture, J. Biomech. Eng., 2008, 130, 041005.
  • [8] ARJMAND N., SHIRAZI-ADL A., Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions, J. Biomech., 2006, 39, 510-521.
  • [9] LU W.W., LUK K.D.K., HOLMES A.D., CHEUNG K.M.C., LEONG J.C.Y., Pure shear properties of lumbar spinal joints and the effect of tissue sectioning on load sharing, Spine, 2005, 30, E204-E209.
  • [10] SHIRAZI-ADL A., EL-RICH M., POP D.G., PARNIANPOUR M., Spinal muscle forces, internal loads and stability in standing under various postures and loads - application of kinematics-based algorithm, Eur. Spine J., 2005, 14, 381-392.
  • [11] STOKES I.A.F., GARDNER-MORSE M.G., Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness, J. Biomech., 1995, 28, 173-186.
  • [12] STOKES I.A.F., GARDNER-MORSE M.G., Quantitative anatomy of the lumbar musculature, J. Biomech., 1999, 32, 311-316.
  • [13] GARDNER-MORSE M.G., LAIBLE J.P., STOKES I.A.F., Incorporation of spinal flexibility measurements into finite element analysis, J. Biomech. Eng. - Trans. ASME, 1990, 112, 481-483.
  • [14] STOKES I.A.F., GARDNER-MORSE M.G., Lumbar spinal muscle activation synergies predicted by multi-criteria cost function, J. Biomech., 2001, 34, 733-740.
  • [15] GAGNON D., LARIVIERE C., LOISEL P., Comparative ability of EMG, optimisation, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting, Clin. Biomech., 2001, 16, 359-372.
  • [16] WILKE H.J., NEEF P., CAIMI M., HOOGLAND T., CLAES L.E., New in vivo measurements of pressures in the intervertebral disc in daily life, Spine, 1999, 24, 755-762.
  • [17] WILKE H.J., NEEF P., HINZ B., SEIDEL H., CLAES L., Intradiscal pressure together with anthropometric data - a data set for the validation of models, Clin. Biomech., 2001, 16, S111-S126.
  • [18] PANJABI M.M., GOEL V.K., OXLAND T., Human lumbar vertebrae - quantitative three-dimensional anatomy, Spine, 1992, 17, 299-306.
  • [19] ZANDER T., ROHLMANN A., CALISSE J., BERGMANN G., Estimation of muscle forces in the lumbar spine during upperbody inclination, Clin. Biomech., 2001, 16, S73-S80.
  • [20] ROHLMANN A., BAUER L., ZANDER T., BERGMANN G., WILKE H.J., Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data, J. Biomech., 2006, 39, 981-989.
  • [21] ZHOU S.H., MCCARTHY I.D., MCGREGOR A.H., COOMBS R.R.H., HUGHES S.P.F., Geometrical dimensions of the lower lumbar vertebrae - analysis of data from digitised CT images, Eur. Spine J., 2000, 9, 242-248.
  • [22] CHOLEWICKI J., JULURU K., MCGILL S.M., Intra-abdominal pressure mechanism for stabilizing the lumbar spine, J. Biomech., 1999, 32, 13-17.
  • [23] HODGES P.W., ERIKSSON A.E.M., SHIRLEY D., GRANDEVIA S.C., Intra-abdominal pressure increases stiffness of the lumbar spine, J. Biomech., 2005, 38, 1873-1880.
  • [24] ARJMAND N., SHIRAZI-ADL A., Role of intra-abdominal pressure in the unloading and stabilization of the human spine during static lifting tasks, Eur. Spine J., 2006, 15, 1265-1275.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0009-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.