PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Migration of the instantaneous axis of motion during axial rotation in lumbar segments and role of the zygapophysial joints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The biomechanical role of the zygapophysial joints was investigated for axial rotations of lumbar segments by recording the positions of the instantaneous helical axis (IHA) against the axial rotational angle and by relating these IHA-positions to anatomical landmarks. Cyclically varying pure axial moments were applied to 3 L1/L2, 7 L3/L4 and 3 L4/L5 segments. There were 800 segment positions per cycle taken by a custom-made high precision 3D-position measuring system. In intact segments IHA-migration reached from one zygapophysial joint to the other IHA-paths came up to 10–60 mm within small angular intervals (š1 deg). After removing the right joints, IHA-migration remained comparable with that of intact segments only for segment positions rotated to the right. Rotation to the left, however, approximately yielded stationary IHA-positions as found after resection of both joints. Hence, IHA-migration is determined by the joints already for small rotational angles. Each type of segment showed a typical pattern of IHA-migration.
Słowa kluczowe
Rocznik
Strony
39--47
Opis fizyczny
Bibliogr. 39 poz., il.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
  • Department of Trauma Surgery, Plastic and Reconstructive Surgery, Georg-August-University, Germany, martin.wachowski@web.de
Bibliografia
  • [1] CUNNINGHAM B.W., GORDON J.D., DMITRIEV A.E., HU N., McAFEE P.C., Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model, Spine, 2003, 28(20), 110-117.
  • [2] GALBUSERA F., BELLINI C.M., ZWEIG T., FERGUSON S., RAIMONDI M.T., LAMARTINA C., BRAYDA-BRUNO M., FORNARI M., Design concepts in lumbar total disc arthroplasty, Eur. Spine J., 2008, 17(12), 1635-1650.
  • [3] McAFEE P.C., CUNNINGHAM B.W., HAYES V., SIDIQI F., DABBAH M., SEFTER J.C., HU N., BEATSON H., Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities, Spine, 2006, 31(19 Suppl.), 152-160.
  • [4] PANJABI M.M., Biomechanical evaluation of spinal fixation devices: I. A conceptual framework, Spine, 1988, 13(10), 1129-1134.
  • [5] PANJABI M.M., ABUMI K., DURANCEAU J., CRISCO J.J., Biomechanical evaluation of spinal fixation devices: II. Stability provided by eight internal fixation devices, Spine, 1988, 13(10), 1135-1140.
  • [6] PANJABI M.M., OXLAND T.R., YAMAMOTO I., CRISCO J.J., Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves, JBJS Am., 1994, 76(3), 413-424.
  • [7] SCHMIDT H., HEUER F., CLAES L., WILKE H.J., The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis, Clin. Biomech., 2008, 23(3), 270-278.
  • [8] WILKE H.J., KRISCHAK S., CLAES L.E., Formalin fixation strongly influences biomechanical properties of the spine, J. Biomech., 1996, 29(12), 1629-1631.
  • [9] GZIK M., WOLAŃSKI W., TEJSZERSKA D., Experimental determination of cervical spine mechanical properties, Acta Bioeng. Biomech., 2008, 10(4), 49-54.
  • [10] CZYŻ M., ŚCIGAŁA K., JARMUNDOWICZ W., BĘDZIŃSKI R., The biomechanical analysis of the traumatic cervical spinal cord injury using finite element approach, Acta Bioeng. Biomech., 2008, 10(1), 43-54.
  • [11] PAWŁOWSKI P., ARASZKIEWICZ M., TOPOLIŃSKI T., MATEWSKI D., Impact of injury on changes in biomechanical loads in human lumbar spine, Acta Bioeng. Biomech., 2009, 11(4), 9-14.
  • [12] PEZOWICZ C., FILIPIAK J., Influence of loading history on the cervical screw pullout strength value, Acta Bioeng. Biomech., 2009, 11(3), 35-40.
  • [13] TYNDYKA M.A., BARRON V., McHUGH P.E., O'MAHONEY D., Generation of a finite element model of the thoracolumbar spine, Acta Bioeng. Biomech., 2007, 9(1), 35-46.
  • [14] COSSETTE J.W., FARFAN H.F., ROBERTSON G.H., WELLS R.V., The instantaneous center of rotation of the third lumbar intervertebral joint, J. Biomech., 1971, 4(2), 149-153.
  • [15] HABERL H., CRIPTON P.A., ORR T.E., BEUTLER T., FREI H., LANKSCH W.R., NOLTE L.P., Kinematic response of lumbar functional spinal units to axial torsion with and without superimposed compression and flexion/extension, Eur. Spine J., 2004, 13(6), 560-566.
  • [16] NIOSI C.A., ZHU Q.A., WILSON D.C., KEYNAN O., WILSON D.R., OXLAND T.R., Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study, Eur. Spine J., 2006, 15(6), 913-922.
  • [17] OXLAND T.R., PANJABI M.M., LIN R.M., Axes of motion of thoracolumbar burst fractures, J. Spinal Disord., 1994, 7(2), 130-138.
  • [18] PANJABI M.M., KRAG M.H., GOEL V.K., A technique for measurement and description of three-dimensional six degree- of-freedom motion of a body joint with an application to the human spine, J. Biomech., 1981, 14(7), 447-460.
  • [19] WHITE A.A. 3rd, PANJABI M.M., The basic kinematics of the human spine. A review of past and current knowledge, Spine, 1978, 3(1), 12-20.
  • [20] ZHU Q., LARSON C.R., SJOVOLD S.G., ROSLER D.M., KEYNAN O., WILSON D.R., CRIPTON P.A., OXLAND T.R., Biomechanical evaluation of the Total Facet Arthroplasty System: 3-dimensional kinematics, Spine, 2007, 32(1), 55-62.
  • [21] BEATTY M.F., Kinematics of finite rigid-body displacements, J. Physics. Am., 1966, 34, 949-955.
  • [22] ROUSSEAU M.A., BRADFORD D.S., HADI T.M., PEDERSEN K.L., LOTZ J.C., The instant axis of rotation influences facet forces at L5/S1 during flexion/extension and lateral bending, Eur. Spine J., 2006, 15(3), 299-307.
  • [23] KETTLER A., MARIN F., SATTELMAYER G., MOHR M., MANNEL H., DURSELEN L., CLAES L., WILKE H.J., Finite helical axes of motion are a useful tool to describe the threedimensional in vitro kinematics of the intact, injured and stabilized spine, Eur. Spine J., 2004, 13(6), 553-559.
  • [24] WACHOWSKI M.M., MANSOUR M., HAWELLEK T., KUBEINMEESENBURG D., HUBERT J., NÄGERL H., Parametric Control of the Stiffness of Lumbar Segments, Strain, 2009, doi: 10.1111/j.1475-1305.2009.00686.x.
  • [25] WACHOWSKI M.M., MANSOUR M., LEE C., ACKENHAUSEN A., SPIERING S., FANGHÄNEL J., DUMONT C., KUBEINMEESENBURG D., NÄGERL H., How do spinal segments move?, J. Biomech., 2009, 42(14), 2286-2293.
  • [26] WOLF K., Lehrbuch der technischen Mechanik starrer Systeme, Springer, Wien, 1947.
  • [27] MANSOUR M., SPIERING S., LEE C., DATHE H., KALSCHEUER A.K., KUBEIN-MEESENBURG D., NÄGERL H., Evidence for IHA migration during axial rotation of a lumbar spine segment by using a novel high-resolution 6D kinematic tracking system, J. Biomech., 2004, 37(4), 583-592.
  • [28] WACHOWSKI M.M., ACKENHAUSEN A., DUMONT C., FANGHÄNEL J., KUBEIN-MEESENBURG D., NÄGERL H., Mechanical properties of cervical motion segments, Arch. Mech. Eng., 2007, LIV (1), 5-15.
  • [29] WACHOWSKI M.M., HUBERT J., HAWELLEK T., MANSOUR M., DORNER J., KUBEIN-MEESENBURG D., FANGHÄNEL J., RAAB B.W., DUMONT B.C., NÄGERL H., Axial rotation in the lumbar spine following axial force wrench, J. Physiol. Pharmacol., 2009, 60 Suppl. 8, 61-64.
  • [30] FANGHÄNEL J., Ingredients of the preserving solution: Aqua dest, alcohol, glycerine, formalin, thymol, salicylic acid, Personal Communication, 2009.
  • [31] FANGHÄNEL J., SCHULTZ F., Mitteilung über eine Konservierungsflüssigkeit für anatomisches Präpariermaterial, Z Med. Labortech, 1962, 3, 329-332.
  • [32] WOLTRING H.J., 3-D attitude representation of human joints: a standardization proposal, J. Biomech., 1994, 27(12), 1399-1414.
  • [33] WOLTRING H.J., LONG K., OSTERBAUER P.J., FUHR A.W., Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics, J. Biomech., 1994, 27(12), 1415-1432.
  • [34] CRIPTON P.A., BRUEHLMANN S.B., ORR T.E., OXLAND T.R., NOLTE L.P., In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts, J. Biomech., 2000, 33(12), 1559-1568.
  • [35] GREGERSEN G.G., LUCAS D.B., An in vivo study of the axial rotation of the human thoracolumbar spine, JBJS Am., 1967, 49(2), 247-262.
  • [36] FROSCH K.H., FLOERKEMEIER T., ABICHT C., ADAM P., DATHE H., FANGHÄNEL J., STURMER K.M., KUBEIN-MEESENBURG D., NÄGERL H., A novel knee endoprosthesis with a physiological joint shape. Part 1: Biomechanical basics and tribological studies, Unfallchirurg, 2009, 112(2), 168-175.
  • [37] KUBEIN-MEESENBURG D., NÄGERL H., FANGHÄNEL J., Elements of a general theory of joints. 1. Basic kinematic and static function of diarthrosis, Anat. Anz., 1990, 170(3-4), 301-308.
  • [38] NÄGERL H., KUBEIN-MEESENBURG D., COTTA H., FANGHÄNEL J., Biomechanical principles of diarthroses and synarthroses. III: Mechanical aspects of the tibiofemoral joint and role of the cruciate ligaments, Z Orthop. ihre Grenzgeb., 1993, 131(5), 385-396.
  • [39] NÄGERL H., KUBEIN-MEESENBURG D., COTTA H., FANGHÄNEL J., ROSSOW A., SPIERING S., Biomechanical principles in diarthroses and synarthroses. IV: The mechanics of lumbar vertebrae, A pilot study, Z Orthop. ihre Grenzgeb., 1995, 133(6), 481-491.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0009-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.