PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

EMG frequency during isometric, submaximal activity : a statistical model for biceps brachii

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to develop a statistical model to describe the electromyography (EMG) signal frequency changes during a submaximal isometric contraction. Thirty subjects performed a 30-second isometric contraction of the biceps brachii muscle at 80% of the maximal voluntary isometric force. Surface EMG electrodes recorded electrical activity of the biceps brachii. Zero-Crossing-Rate was calculated to identify EMG frequency shifts. The mean frequencies for every one-second period were used to calculate a linear relationship between frequency and time. A significant relationship ( p < 0.05) between slope and initial frequency value was identified. The model described EMG frequency changes during submaximal effort of biceps brachii up to 15 seconds. The prediction error was 9.8%. Modifying this equation to initial values of frequency of each participant decreased prediction error to 7.2%. These results demonstrate that despite individual differences between subjects it is possible to derive single equation that describes EMG alterations during submaximal, isometric contractions across a homogeneous group of people.
Rocznik
Strony
21--28
Opis fizyczny
Bibliogr. 45 poz., il.
Twórcy
autor
autor
autor
autor
Bibliografia
  • [1] KOMI P.V., TESCH P., EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man, European Journal of Applied Physiology and Occupational Physiology, 1979, 42, 41-50.
  • [2] De LUCA C.J., Myoelectrical manifestations of localized muscular fatigue in humans, Critical reviews in biomedical engineering, 1984, 11, 251-279.
  • [3] CIFREK M., TONKOVIC S., MEDVED V., Measurement and analysis of surface myoelectric signals during fatigued cyclic dynamic contractions, Measurement, 2000, 27, 85-92.
  • [4] SJOGAARD G., SAVARD G., JUEL C., Muscle blood flow during isometric activity and its relation to muscle fatigue, European Journal of Applied Physiology and Occupational Physiology, 1988, 57, 327-335.
  • [5] SJOGAARD G., Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review, Can. J. Physiol. Pharmacol., 1991, 69, 238-245.
  • [6] BIGLAND-RITCHIE B.R., DAWSON N.J., JOHANSSON R.S., LIPPOLD O.C., Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions, J. Physiol., 1986, 379, 451-459.
  • [7] JAKOBI J.M., RICE C.L., CURTIN S.V., MARSH G.D., Neuromuscular properties and fatigue in older men following acute creatine supplementation, Eur. J. Appl. Physiol., 2001, 84, 321-328.
  • [8] LINNAMO V., HAKKINEN K., KOMI P.V., Neuromuscular fatigue and recovery in maximal compared to explosive strength loading, Eur. J. Appl. Physiol. Occup. Physiol., 1998, 77, 176-181.
  • [9] DIMITROVA N.A., DIMITROV G.V., Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies, J. Electromyogr. Kinesiol., 2003, 13, 13-36.
  • [10] EBERSTEIN A., BEATTIE B., Simultaneous measurement of muscle conduction velocity and EMG power spectrum changes during fatigue, Muscle Nerve, 1985, 8, 768-773.
  • [11] FARINA D., FATTORINI L., FELICI F., FILLIGOI G., Nonlinear surface EMG analysis to detect changes of motor unit conduction velocity and synchronization, J. Appl. Physiol., 2002, 93, 1753-1763.
  • [12] LINDSTROM L., MAGNUSSON R., PETERSEN I., Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals, Electromyography, 1970, 10, 341-356.
  • [13] LINSSEN W.H., STEGEMAN D.F., JOOSTEN E.M., van't HOF M.A., BINKHORST R.A., NOTERMANS S.L., Variability and interrelationships of surface EMG parameters during local muscle fatigue, Muscle Nerve, 1993, 16, 849-856.
  • [14] LOWERY M., NOLAN P., O'MALLEY M., Electromyogram median frequency, spectral compression and muscle fibre conduction velocity during sustained sub-maximal contraction of the brachioradialis muscle, J. Electromyogr. Kinesiol., 2002, 12, 111-118.
  • [15] MERLETTI R., SABBAHI M.A., De LUCA C.J., Median frequency of the myoelectric signal. Effects of muscle ischemia and cooling, Eur. J. Appl. Physiol. Occup. Physiol., 1984, 52, 258-265.
  • [16] BIGLAND-RITCHIE B., JOHANSSON R., LIPPOLD O.C., SMITH S., WOODS J.J., Changes in motoneurone firing rates during sustained maximal voluntary contractions, J. Physiol., 1983, 340, 335-346.
  • [17] BIGLAND-RITCHIE B., JOHANSSON R., LIPPOLD O.C., WOODS J.J., Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions, J. Neurophysiol., 1983, 50, 313-324.
  • [18] GARLAND S.J., GARNER S.H., McCOMAS A.J., Reduced voluntary electromyographic activity after fatiguing stimulation of human muscle, J. Physiol., 1988, 401, 547-556.
  • [19] WOODS J.J., FURBUSH F., BIGLAND-RITCHIE B., Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates, J, Neurophysiol., 1987, 58, 125-137.
  • [20] De LUCA C.J., The use of surface electromyography in biomechanics, Journal of Applied Biomechanics, 1997, 13, 135-163.
  • [21] BARTUZI P., TOKARSKI T., ROMAN-LIU D., The effect of the fatty tissue on EMG signal in young women, Acta of Bioengineering and Biomechanics, 2010, 12, 87-92.
  • [22] FELICI F., ROSPONI A., SBRICCOLI P., FILLIGOI G.C., FATTORINI L., MARCHETTI M., Linear and non-linear analysis of surface electromyograms in weightlifters, European Journal of Applied Physiology, 2001, 84, 337-342.
  • [23] ROY S.H., De LUCA C.J., EMLEY M., ODDSSON L.I., BUIJS R.J., LEVINS J.A., NEWCOMBE D.S., JABRE J.F., Classification of back muscle impairment based on the surface electromyographic signal, Journal of Rehabilitation Research and Development, 1997, 34, 405-414.
  • [24] SUTER E., LINDSAY D., Back muscle fatigability is associated with knee extensor inhibition in subjects with low back pain, Spine, 2001, 26, 361-366.
  • [25] DEDERING A., ROOS af HJELMSATER M., ELFVING B., HARMS-RINGDAHL K., NEMETH G., Between-days reliability of subjective and objective assessments of back extensor muscle fatigue in subjects without lower-back pain, J. Electromyogr. Kinesiol., 2000, 10, 151-158.
  • [26] FARINA D., MADELEINE P., GRAVEN-NIELSEN T., MERLETTI R., ARENDT-NIELSEN L., Standardising surface electromyogram recordings for assessment of activity and fatigue in the human upper trapezius muscle, Eur. J. Appl. Physiol., 2002, 86, 469-478.
  • [27] HERMENS H.J., FRERIKS B., DISSELHORST-KLUG C., RAU G., Development of recommendations for SEMG sensors and sensor placement procedures, J. Electromyogr. Kinesiol., 2000, 10, 361-374.
  • [28] HAGG G., Electromyographic fatigue analysis based on the number of zero crossings, Pflugers Arch., 1981, 391, 78-80.
  • [29] BYSTROM S.E., KILBOM A., Physiological response in the forearm during and after isometric intermittent handgrip, Eur. J. Appl. Physiol. Occup. Physiol., 1990, 60, 457-466.
  • [30] BYSTROM S.E., MATHIASSEN S.E., FRANSSON-HALL C., Physiological effects of micropauses in isometric handgrip exercise, Eur. J. Appl. Physiol. Occup. Physiol., 1991, 63, 405-411.
  • [31] HAGG G.M., MILERAD E., Forearm extensor and flexor muscle exertion during simulated gripping work - an electromyographic study, Clin. Biomech. (Bristol, Avon), 1997, 12, 39-43.
  • [32] KILBOM A., HAGG G.M., KALL C., One-handed load carrying - cardiovascular, muscular and subjective indices of endurance and fatigue, Eur. J. Appl. Physiol. Occup. Physiol., 1992, 65, 52-58.
  • [33] HAGG G.M., Comparison of different estimators of electromyographic spectral shifts during work when applied on short test contractions, Med. Biol. Eng. Comput., 1991, 29, 511-516.
  • [34] MORLOCK M.M., BONIN V., MULLER G., SCHNEIDER E., Trunk muscle fatigue and associated EMG changes during a dynamic iso-inertial test, Eur. J. Appl. Physiol. Occup. Physiol., 1997, 76, 75-80.
  • [35] THEIL H., The Principles of Econometrics, Wiley, New York, 1971.
  • [36] SOBCZYK M., Statistics, UMCS, Lublin, 2000.
  • [37] BENTLEY D.J., SMITH P.A., DAVIE A.J., ZHOU S., Muscle activation of the knee extensors following high intensity endurance exercise in cyclists, Eur. J. Appl. Physiol., 2000, 81, 297-302.
  • [38] BRODY L.R., POLLOCK M.T., ROY S.H., De LUCA C.J., CELLI B., pH-induced effects on median frequency and conduction velocity of the myoelectric signal, J. Appl. Physiol., 1991, 71, 1878-1885.
  • [39] ESPOSITO F., ORIZIO C., VEICSTEINAS A., Electromyogram and mechanomyogram changes in fresh and fatigued muscle during sustained contraction in men, Eur. J. Appl. Physiol. Occup. Physiol., 1998, 78, 494-501.
  • [40] IKEGAWA S., SHINOHARA M., FUKUNAGA T., ZBILUT J.P., WEBBER C.L. Jr., Nonlinear time-course of lumbar muscle fatigue using recurrence quantifications, Biol. Cybern., 2000, 82, 373-382.
  • [41] MILLER R.G., BOSKA M.D., MOUSSAVI R.S., CARSON P.J., WEINER M.W., 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. Comparison of aerobic and anaerobic exercise, J. Clin. Invest., 1988, 81, 1190-1196.
  • [42] HAGG G.M., Interpretation of EMG spectral alterations and alteration indexes at sustained contraction, J. Appl. Physiol., 1992, 73, 1211-1217.
  • [43] SBRICCOLI P., BAZZUCCHI I., ROSPONI A., BERNARDI M., De VITO G., FELICI F., Amplitude and spectral characteristics of biceps brachii sEMG depend upon speed of isometric force generation, J. Electromyogr. Kinesiol., 2003, 13, 139-147.
  • [44] KULIG K., POWERS C.M., SHELLOCK F.G., TERK M., The effects of eccentric velocity on activation of elbow flexors: evaluation by magnetic resonance imaging, Med. Sci. Sports Exerc., 2001, 33, 196-200.
  • [45] MANNION A.F., DOLAN P., The effects of muscle length and force output on the EMG power spectrum of the erector spinae, J. Electromyogr. Kinesiol., 1996, 6, 159-168.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0009-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.