PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of changes in gait speed and step frequency on the extent of the center of mass displacements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Center of mass (COM) trajectory plays a crucial role in the analysis of human body movements. This research aimed at studying vertical and transverse COM displacements during gait on a treadmill at a given velocity and step frequency. Locomotion study was accomplished using: Vicon 250, Cardionics Treadmill 3113 and metronome Korg Ma-30. The data achieved for 12 women and 15 men aged 21–22 revealed similarity in vertical COM oscillations in both groups. Lateral COM displacements (LCOM) were slightly higher in men than in women and they showed tendency to decrease as gait velocity increased. During natural locomotion there was an increasing trend as walking speed increased. At a given velocity of locomotion LCOM were decreasing as step frequency increased. The only astonishing thing was that the biggest changes of vertical COM oscillations (VCOM) were noticed at the fastest walking speed (6 km/h). It seems that so large decrease in VCOM during walking with high velocity and increased step cadency is a consequence of considerable shortening of the movement cycles and performing time of one step.
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 34 poz., il.
Twórcy
autor
autor
Bibliografia
  • [1] WINTER D.A., The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, University of Waterloo Press, Waterloo, 1991.
  • [2] PERRY J., Gait analysis: normal and pathological function, Thorofare, NJ, USA: SLACK Incorporated, 1992.
  • [3] DETREMBLEUR C., van den HECKE A., DIERICK F., Motion of the body centre of gravity as a summary indicator of the mechanics of human pathological gait, Gait and Posture, 2000, 12, 243-250.
  • [4] LINDEMANN U., NAJAFI B., ZIJLSTRA W., HAUER K., MUCHE R., BECKER C., AMINIAN K., Distance to achieve steady state walking speed in frail elderly persons, Gait and Posture, 2008, 27, 91-96.
  • [5] CHOU L., SONG S., DRAGANICH L., Predicting the kinematics and kinetics of gait based on the optimum trajectory of the swing limb, Journal of Biomechanics, 1995, 28 (4), 377-385.
  • [6] HODGES P., CRESSWELL A., DAGGFELDT K., THORSTENSSON A., Three dimensional preparatory trunk motion precedes asymmetrical upper limb movement, Gait and Posture, 2000, 11, 92-101.
  • [7] SASAKI K., NEPTUNE R., Differences in muscle function during walking and running at the same speed, Journal of Biomechanics, 2006, 39, 2005-2013.
  • [8] ORENDURFF M., SEGAL A., MICHAEL A., DOROCIAK R., Triceps surae force, length and velocity during walking, Gait and Posture, 2005, 21, 157-163.
  • [9] STEFANO de A., BURRIDGE J., YULE V., ALLEN R., Effect of gait cycle selection on EMG analysis during walking in adults and children with gait pathology, Gait and Posture, 2004, 20, 92-101.
  • [10] WATERS R., MULROY S., The energy expenditure of normal and pathologic gait, Gait and Posture, 1999, 9, 207-231.
  • [11] REN L., JONES R., HOWARD D., Predictive modeling of human walking over a complete gait cycle, Journal of Biomechanics, 2007, 40, 1567-1574.
  • [12] IERSEL van M., OLDE RIKKERT, M., BORM G., A method to standardize gait and balance variables for gait velocity, Gait and Posture, 2007, 26, 226-230.
  • [13] KAWAMURA C., de MORAIS FILHO M., BARRETO M., de PAULA S., JULIANO Y., FERREIRA N., Comparison between visual and three-dimensional gait analysis in patients with spastic diplegic cerebral palsy, Gait and Posture, 2007, 25, 18-24.
  • [14] WNUK B., DURMALA J., Zastosowanie chodu do tyłu w fizjoterapii (in Polish), Fizjoterapia, 2006, 14 (3), 64-67.
  • [15] KINGMA I., TOUSSAINT H., COMMISSARIS D., HOOZEMANS M., OBER M., Optimizing the determination of the body center of mass, Journal of Biomechanics, 1995, 28(9), 1137-1142.
  • [16] RABUFFETTI M., BARONI G., Validation protocol of models for centre of mass estimation, Journal of Biomechanics, 1999, 32, 609-613.
  • [17] CHOU L., KAUFMAN K., HAHN M., BREY R., Medio-lateral motion of the center of mass during obstacle crossing distinguishes elderly individuals with imbalance, Gait and Posture, 2003, 18, 125-133.
  • [18] SCHACHE A., BAKER R., VAUGHAN C., Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames, Journal of Biomechanics, 2007, 40, 9-19.
  • [19] HELBOSTAD J., MOE-NILSSEN R., The effect of gait speed on lateral balance control during walking in healthy elderly, Gait and Posture, 2003, 18, 27-36.
  • [20] FORNER-CORDERO A., KOOPMAN H., van der HELM F., Describing gait as a sequence of states, Journal of Biomechanics, 2006, 39, 948-957.
  • [21] HOLT K., WAGENAAR R., LAFIANDRA M., KUBO M., OBUSEK J., Increased musculoskeletal stiffness during load carriage at increasing walking speeds maintains constant vertical excursion of the body center of mass, Journal of Biomechanics, 2003, 36, 465-471.
  • [22] PARKER T., OSTERNIG L., CHOU L., Frontal plane center of mass motion with cognitive preturbation in athletes and nonathletes following concussion, Journal of Biomechanics, 2007, 40 (S2), 125.
  • [23] MURRAY M., SPURR G., SEPIC S., Treadmill vs. floor walking: kinematics, electromyogram and heart rate, Journal of Applied Physiology, 1985, 59(1), 87-91.
  • [24] RILEY P., PAILINI G., CROCE U., PAYLO K., KERRIGAN D., A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects, Gait and Posture, 2007, 26, 17-24.
  • [25] LEE C., FARLEY C., Determinants of the center of mass trajectory in human walking and running, The Journal of Experimental Biology, 1998, 201, 2935-2944.
  • [26] ZIJLSTRA W., HOF A., Displacement of pelvis during human walking: experimental data and model predictions, Gait and Posture, 1997, 6, 249-262.
  • [27] DIERICK F., LEFEBVRE C., van den HECKE, A., DETREMBLEUR C., Development of displacement of centre of mass during independent walking in children, Developmental Medicine and Child Neurology, 2004, 46, 533-539.
  • [28] SMITH L., LELAS J., KERRIGAN C., Gender differences in pelvic motions and center of mass displacement during walking: stereotypes quantified, Journal of Women's Health, 2002, 11(5), 453-458.
  • [29] HAHN M., CHOU L., Age-related reduction in sagittal plane center of mass motion during obstacle crossing, Journal of Biomechanics, 2004, 37, 837-844.
  • [30] ORENDURFF M., SEGAL A., KLUTE G., BERGE J., ROHR E., KADEL N., The effect of walking speed on center of mass development, Journal of Rehabilitation Research and Development, 2004, 41, 829-834.
  • [31] WINTER D.A., Human balance and posture control during standing and walking, Gait and Posture, 1995, 3, 193-214.
  • [32] NORKIN C., LEVANGIE P., Joint structure and function, FA Davies, Philadelphia, 1992.
  • [33] GORDON K., FERRIS D., KUO D., Reducing vertical center of mass movement during human walking doesn't necessarily reduce metabolic cost, Proc. 27th Ann. Mtg. Amer. Soc. Biomech., Toledo, OH, 2003.
  • [34] ORTEGA J.D., HARLEY C.T., Minimizing center of mass vertical movement increases metabolic cost in walking, Journal of Applied Physiology 2005, 99, 2099-2107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0009-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.